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Definition 2.1

A group is a set G together with an operation � such that

G is close under �: for all a, b ∈ G, a� b ∈ G,

� is associative: for all a, b, c ∈ G, (a� b)� c = a� (b� c),

G contains an identity element e for �: for all a ∈ G, a� e = e� a = a,

G is close by inversion: for all a ∈ G, there exists a b ∈ G such that
a� b = b� a = e. (usually written −a or a−1).

If moreover � is commutative in G, i.e. for all a, b ∈ G, a� b = b� a, we say
that (G,�) is abelian group.
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Example 2.1

Show whether the following sets are groups or not. Are they abelian groups?

C(R,R) the set of continuous functions on R, together with the usual
addition: f + g is the function defined on R such that
(f + g)(x) = f(x) + g(x).

It is also a multiplicative group?

What if we use the composition?

For a given N ≥ 2, let GN := {ω ∈ C : ωN = 1}. Is it a multiplicative
group with the usual scalar multiplication?
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Definition 2.2

A field is a set G with two operations ⊕ (usually called the addition) and ⊗
(the multiplication) such that

(G,⊕) is an abelian group with (additive) identity 0G,

(G\{0G},⊗) is an abelian group with (multiplicative) identity 1G,

the multiplication is distributive over the addition: for all a, b, c ∈ G,
a⊗ (b⊕ c) = (a⊕ b)⊗ (a⊕ c).
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Definition 2.3

A vector space over a field F (with operations ⊕F and ⊗F and respective
identitites 0F , 1F ) is a set of vectors V together with two operations ⊕V
(vector addition) and �S (the scalar multiplication) such that

1 (V,⊕V ) is an abelian group, with the zero vector 0V ,

2 for all v ∈ V , 1F �S v = v

3 the scalar multiplication is distributive: for all u,v ∈ V , for all
α ∈ F, α�S (u⊕V v) = α�S u⊕V α�S v,

4 the scalar multiplication is compatible: for all α, β ∈ F, for all v ∈ V ,
α�S (β �S v) = (α⊗F β)�S v,

5 Distributivity of scalar multiplication of the additive field: for all α, β ∈ F,
and for all v ∈ V , (α⊕F β)�S v = α�S v ⊕V β �S v.
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Example 2.2

Classical vectors Rn, Cn

Rn[x] := {f(x) = a0 + a1x+ · · ·+ anx
n; (a0, · · · , an) ∈ Rn+1}

R[x] ?

{(x, y, z)T : ax+ by + cz = 0}
{(x, y, z)T : ax+ by + cz = 1}

Jean-Luc Bouchot Matrix Analysis: Review of linear algebra



Review of linear algebra

Remark 2.1

It should be clear from the context whether the vector of scalar multiplication /
addition is meant. We will therefore drop the subscripts to avoid
overcomplicating the notation.
Moreover, the vector space (V ;F) will only be denoted V unless there are any
ambiguities.

Jean-Luc Bouchot Matrix Analysis: Review of linear algebra



Review of linear algebra

Definition 2.4

A subset W ⊆ V is a subspace of V if

1 0V ∈W
2 for all u,v ∈W , u + v ∈W
3 for all v ∈W and α ∈ F, αv ∈W .
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Exercise 2.1

Let U be a vector space and V,W ⊂ U two subspaces. Are the following sets
subspaces of U?

1 V ∩W := {u : u ∈ V and u ∈W}
2 V ∪W := {u : u ∈ V or u ∈W}
3 V +W := {u : ∃v ∈ V,w ∈W : u = v + w}
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Definition 2.5

Let V ⊂ U be a subset of U (not necessarily a subspace). We define its span
has the intersection of all subsets of U which contain V . We write
W = span(V ). W is a subspace of U (verify this).
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Proposition 2.1

Let V ⊂ U . span(V ) = {
∑n
k=1 αkvk, k = 1, · · · }.
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Exercise 2.2

Let u and v be two linearly independent vectors. Show that
span{u,v,u + v} = span{u,v} = span{u,u + v}.
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Definition 2.6

Let V be a vector space and F = (v1, · · · ,vn) be a family of n vectors in V .
We say that the family F is a linearly independent set of vectors if

n∑
i=1

αivi = 0⇔ α1 = · · · = αn = 0.

A family which is not linearly independent is said to be a linearly dependent.

Jean-Luc Bouchot Matrix Analysis: Review of linear algebra



Review of linear algebra

Exercise 2.3

Write down the definition of what it means to be linearly dependent.
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Example 2.3

((1, 0), (0, 1))

((1, 0), (1, 1))

((1, 0), (0, 1), (1, 1))(
(x 7→ cos(x)), (x 7→ cos(2x)), (x 7→ cos2(x))

)
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Exercise 2.4

Consider V = Rn[x]. Are the following families linearly dependent?

(1, x, · · · , xn)

(1, 1 + x, 1 + x+ x2, · · · , 1 + x+ · · ·+ xn−1 + xn)

(1, 1 + x, 1 + x2, · · · , 1 + xn)

(1 + x, x+ x2, x2 + x3, · · · , xn−1 + xn, xn + 1)
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Definition 2.7

A family F = (v1, · · · ,vn) ⊂ V is a generating family or spanning set if for
all v ∈ V , there exists scalars α1, · · · , αn ∈ F such that
v = α1v1 + · · ·+ αnvn.

Jean-Luc Bouchot Matrix Analysis: Review of linear algebra



Review of linear algebra

Definition 2.8

A family F of vectors is a basis if it is a linearly independent spanning set.
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Exercise 2.5

Are the following families generating? Linearly independent? Basis?

(1, x, · · · , xn)

(1, 1 + x, 1 + x+ x2, · · · , 1 + x+ · · ·+ xn−1 + xn)

(1, 1 + x, 1 + x2, · · · , 1 + xn)

(1 + x, x+ x2, x2 + x3, · · · , xn−1 + xn, xn + 1)
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Theorem 2.1

Let V be a vector space and F = {u1, · · · ,un} be a basis for V . Then for all
v ∈ V , there exists unique scalars α1, · · · , αn ∈ F such that

v =

n∑
i=1

αivi.

This unique representation gives rise to the notion of coordinates of a vector
with respect to a certain basis.
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Theorem 2.2

Let V be a vector space and B and C two basis. Then B and C have the same
number of vectors.
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Definition 2.9

The dimension of a vector space is the number of vectors in any of its basis.
We write dim(V ) = n. A vector space can be

Finite dimensional if dim(V ) <∞, or

Infinite dimensional if dim(V ) =∞.
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Exercise 2.6

What is the dimension of the following vector spaces:

Rn[x]

R[x]

Rn

Cn
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Theorem 2.3

Let V be a finite dimensional vector space with dim(V ) = n <∞ and let
S = {v1, · · · ,vn}. The following statements are equivalent:

1 S is a basis for V .

2 S is a spanning set.

3 S is linearly independent.
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Definition 2.10

Let U and V be two vector spaces over the same field F. A map f : U → V is
said to be a linear map if

for all u,v ∈ U , f (u +U v) = f (u) +V f (v),

for all α ∈ F and u ∈ U , f (αu) = αf (u).
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Example 2.4

x 7→ 2x, αx

For a given vector a ∈ Kn, the map Ta : Kn → K,x 7→ aTx =
∑
aixi is

linear.
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Exercise 2.7

Let C1(R) be the set of continuously differentiable functions. Verify that
T : C1 → C0, f 7→ f ′ is a linear map.
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Exercise 2.8

Prove that for any vector spaces V,W and any linear map f : V →W ,
f(0) = 0.
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Definition 2.11

A matrix is a table of numbers. We denote the set of matrices of size m times
n over the field F as Fm×n.
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Proposition 2.2

Let V and W be two finite dimensional vectors spaces with dim(U) = n and
dim(V ) = m and let f : V →W be a linear map. Let S = (v1, · · · ,vn) be a
basis for V . Then f is completely determined by the values of f(vi).
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Exercise 2.9

Let f : U = R3[x]→ V = R3[x] be defined as the differentiation operator.
Compute the matrices associated to f given the following basis

U = span(1, x, x2, x3) and V = span(1, x, x2, x3).

U = span(1, x, x2, x3) and V = span(1, 1 + x, 1 + x2, 1 + x3).

U = span(1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3) and
V = span(1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3).
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Definition 2.12

Let V and W be two vector spaces and φ : V →W a linear transformation.
The range or image of φ is the subspace
R(φ) = Im(φ) = {w ∈W : ∃v ∈ V with w = φ(v)} ⊂W .
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Definition 2.13

Let V and W be two vector spaces and φ : V →W a linear transformation.
The nullspace or kernel of φ is the subspace
N(φ) = Ker(φ) = φ−1(0) = {v ∈ V : φ(v) = 0} ⊂ V .
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Exercise 2.10

Prove that the range and kernel of a linear mapping are indeed subspaces.
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Exercise 2.11

Let f : V →W , S = (v1,vk) and T = (f(vi))i. What can be said about T if

S is a spanning set?

S is linearly dependent?

S is linearly independent?

S is a basis?

Jean-Luc Bouchot Matrix Analysis: Review of linear algebra



Review of linear algebra

Definition 2.14

The rank of a linear application is the dimension of its range:
rk(f) = dim(f(V )).
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Theorem 2.4 (Rank-nullity theorem)

Let V and W be two vector spaces with dim(V ) = n <∞ and let f : V →W
be a linear map. It holds

dim(ker(f)) + rk(f) = dim(V ).
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Definition 2.15

Let A ∈ Fm×m. Its trace is defined as the sum of its diagonal entries:

tr :
Fm×m → F
A 7→ tr(A) =

∑m
i=1 ai,i
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Exercise 2.12

Show that the trace is linear and prove the following identity:

tr(AB) = tr(BA), for any A ∈ Fm×n, B ∈ Fn×m.
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Definition 2.16

The determinant of a matrix is defined in one of the following ways:

1 It is the only function f : Fn × · · ·Fn → F that is linear with respect to
each column, alternating f(· · · ,u, · · · ,v, · · · ) = −f(· · · ,v, · · · ,u, · · · )
and normalized such that f(I) = 1.

2 det(A) =
∑
σ∈Pn

sign(σ)a1,σ(1) · · · an,σ(n) where Pn is the set of
permutations of {1, · · · , n} and sign(σ) = (−1)s where s is the number of
pairwise interchanges in σ.

3 det(A) =
∑n
j=1 ai,j det(Ai,j) where Ai,j is the matrix obtained from A

by deleting the row i and column j.
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Exercise 2.13

Prove or compute the following results:

det(AB) = det(A) det(B)

Computations for 2× 2 matrices and Sarrus’ rule for 3× 3.

det(AT ) =?

Aadj(A) = adj(A)A = det(A)I, where adj(A)i,j = (−1)i+jAj,i is the
adjunct or adjugate matrix.
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Definition 2.17

A matrix A is said to be diagonal if ai,j = 0 for i 6= j.
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Definition 2.18

A matrix A is said to be upper triangular if ai,j = 0 for i > j.
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Definition 2.19

A matrix A is said to be lower triangular if ai,j = 0 for i < j.
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Definition 2.20

A matrix A is said to be symmetric if AT = A.
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Definition 2.21

A matrix A is said to be skew-symmetric if AT = −A.
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Definition 2.22

A matrix A is said to be Hermitian if A∗ := ĀT = A.
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Definition 2.23

A matrix A is said to be invertible if there exists a matrix B such that
AB = BA = I. We write B = A−1.
If it is not invertible, it is said to be singular.
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Exercise 2.14

Are all sets of these particular matrices subspaces of the vector space of
matrices? In case of vector subspaces, what are their dimensions and give some
basis.
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Exercise 2.15

Which kind of structure does the set of symmetric matrices have?
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Exercise 2.16

Prove that A is invertible if and only if det(A) 6= 0 and give a formula for its
inverse.
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Exercise 2.17

Let T be an upper triangular matrix. Show that det(T ) =
∏
tii.
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Proposition 2.3

Given a square matrix A, the following statements are equivalent

1 A is invertible.

2 ker(A) = {0}.
3 R(A) = Kn.
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Definition 2.24

We say that a matrix A is similar to a matrix B and write A ∼ B if there
exists an invertible matrix P such that A = PBP−1.
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Exercise 2.18

Let f be the differential operator on the set of degree 2 polynomials. Let
S = (1, x, x2) and T = (1, 1 + x, 1 + x+ x2). Furthermore, let A be the
representation of f in the basis S and B the matrix representing f in T . Show
that A ∼ B. What does P represent?
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Definition 2.25

V = S ⊕ T is the direct sum of the subspaces S and T if

1 S ∩ T = {0} and

2 V = S + T .
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Exercise 2.19

Let S be the set of symmetric matrices and T the set of skew-symmetric
matrices. Show that Kn×n = S ⊕ T .
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Definition 2.26

Given a square matrix A ∈ Kn×n. A pair of vector and scalar (x, λ) ∈ K×Kn
is called an eigenpair if

x 6= 0,

Ax = λx.

x is called an eigenvector with eigenvalue λ.
The set of all eigenvectors corresponding to an eigenvalue λ is called the
eigenspace corresponding to λ
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Exercise 2.20

Verify that the eigenspaces are indeed vector spaces.
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Proposition 2.4

λ ∈ K is an eigenvalue for A ∈ Kn×n if and only if

det(A− λI) = 0.
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Definition 2.27

For a given square matrix A ∈ Kn×n, its characteristic polynomial pA(x) is
defined as

pA(x) = det(A− xI).

Hence, the zeros of the characteristic polynomial corresponds to the
eigenvalues!
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Definition 2.28

The set σ(A) = {x ∈ K : pA(x) = 0} is called the spectrum of A.
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Exercise 2.21

Show that

pA(x) = (−1)nxn + (−1)n−1tr(A)xn−1 + · · ·+ det(A)

and show that

tr(A) =

n∑
i=1

λi det(A) =

n∏
i=1

λi

where the λi are the n (possibly complex and repeated eigenvalues of A).
Conclude that A is invertible ⇔ 0 /∈ σ(A).

Jean-Luc Bouchot Matrix Analysis: Review of linear algebra



Review of linear algebra

Exercise 2.22

Let A and B be two square matrices such that A ∼ B. It holds

tr(A) = tr(B)

det(A) = det(B).
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Theorem 2.5 (Invertible matrix theorem)

Let A ∈ Kn×n. The following statements are equivalent

1 A is non-singular

2 A−1 exists

3 rk(A) = n

4 the columns of A are linearly independent

5 the rows of A are linearly independent

6 det(A) 6= 0

7 the dimension of the range of A is n

8 the nullity of A is 0

9 Ax = y is consistent (= admits at least one solution) for each y ∈ Kn

10 if Ax = y is consistent then the solution is unique

11 Ax = y has a unique solution for each y ∈ Kn

12 the only solution to Ax = 0 is x = 0

13 0 is not an eigenvalue of A
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Proposition 2.5

Let u and v be two eigenvectors associated to the two different eigenvalues
λ 6= 0 and µ 6= 0 respectively. Then u and v are linearly independent.
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Exercise 2.23

Show the following: there exists a non-singular matrix V and a diagonal matrix
D such that A = V DV −1 if and only if there exists n linearly independent
eigenvectors vi with respective eigenvalues λi.
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Definition 2.29

We say that a matrix A is diagonalizable if there exists a non-singular matrix
P and a diagonal matrix D such that

A = PDP−1.
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Definition 2.30

Let pA(x) = (−1)n(x− λ1)p1 · · · (x− λr)pr with
∑
pi = n, be written in its

(complex) factorized form. Then

pi is the algebraic multiplicity of the eigenvalue λi

dim(ker(A− λiI)) = n− rk(A− λiI) =: qi is the geometric
multiplicity of the eigenvalue λi.
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Exercise 2.24

Let A =

[
1 2
0 1

]
and B =

[
1 0
0 1

]
. Find the eigenvalues, their algebraic

and geometric multiplicities of A and B.
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Proposition 2.6

Let A ∈ Kn×n and let λ1, · · · , λr be r distinct eigenvalues with respective
geometric multiplicities q1, · · · , qr. Let furthermore vji be the jth eigenvector
with eigenvalue λi, 1 ≤ i ≤ r, 1 ≤ j ≤ qi. Then the family {vji }i,j is a linearly
independent family of vectors.
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Theorem 2.6

Let A ∈ Kn×n. A is diagonalizable if and only if qi = pi for all r distinct
eigenvalues.
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Corollary 2.1

If an n× n matrix A has n distinct eigenvalues, then A is diagonalizable.
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Example 2.5

The process of diagonalizing a matrix is always the same:

1 Compute the characteristic polynomial

2 Find the eigenvalues and their respective algebraic multiplicities

3 For each eigenvalue, find a basis of the eigenspaces

4 Side: if you find less eigenvectors than the total dimension, the matrix is
not diagonalizable

5 Define the matrix V = [v1, . . . ,vn] containing all the eigenvectors

6 Define the matrix D = diag(λ1, · · · , λn)

7 You obtain the diagonalization A = V DV −1.

Apply this to

A =

 −1 3 −1
−3 5 −1
−3 3 1

 .
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