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Definition 2.1

A complex quadratic form is said to be positive-definite if f(x) = x∗Ax > 0,
for all x ∈ Kn\{0}. On this case, the (Hermitian) matrix A is said to be
positive definite.
If the strict inequality is relaxed to ≥ 0, we say that the quadratic form f and
the matrix A are positive semi definite.
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Definition 2.2

If the (Hermitian) matrix −A is positive (semi-)definite, then A is said to be
negative (semi-)definite.
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Theorem 2.1

Let A be a Hermitian matrix and let f denote its associated complex quadratic
form. The following statements are equivalent.

1 f is positive definite.

2 C∗AC is positive definite for every invertible C.

3 σ(A) ⊂ R≥0.

4 There exists an invertible matrix P such that P ∗AP = I.

5 There exists an invertible matrix Q such that A = Q∗Q.
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Exercise 2.1

Show that if A is a unitary positive definite matrix, then A = I.
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Exercise 2.2

Let A and B be two positive semi-definite matrices. Prove twice that A+B is
positive semi definite using

1 a direct computation of the associated complex quadratic form,

2 Weyl’s inequalities
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Theorem 2.2

Let A and B be two Hermitian matrices and assume moreover that B is
positive definite. Then there exists a non-singular matrix P such that

P ∗AP = diag(α1, · · · , αn), P ∗BP = I.

The scalars α1, · · · , αn are independent of the matrix P .
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Lemma 1

Let A ∈ Km×n. It holds

rk(A) = rk(A∗) = rk(AA∗) = rk(A∗A).
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Remark 2.1

In case of real matrices, we can replace the Hermitian conjugate by simple
transpose. Verify that this cannot be true for complex matrices.
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Lemma 2

Let A be an m× n matrix and B be an n×m matrix and assume m ≤ n. The
following holds

pBA(t) = tn−mpAB(t).
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Corollary 2.1

Let A ∈ Km×n. Then AA∗ and A∗A have the same spectrum (up to the 0
eigenvalue and its multiplicity).
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Lemma 3

AA∗ and A∗A are positive semidefinite matrices.
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Definition 2.3

The singular values of a matrix A ∈ Km×n are the square roots of the
eigenvalues of AA∗ or equivalently A∗A:

σi(A) =
√
λi(AA∗) =

√
λi(A∗A), 1 ≤ i ≤ min{m,n}.
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Remark 2.2

It is important to notice the followings:

1 assuming the eigenvalues to be enumerated in non-decreasing order, we
have that λi(AA

∗) = λi(A
∗A) ≥ 0.

2 the number of non-zero singular values are precisely the rank of A: r.

3 the number of (counting multiplicities) singular values is equal to the
smallest dimension – this explains the somewhat odd definition

4 only the non-zero singular eigenvalues will often play a role. The singular
value decomposition below will make it clear what is meant.
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Exercise 2.3

Singular values and eigenvalues usually not related. Find the eigenvalues and
singular values of the following matrices:

A =

 1 0 1
0 1 1
0 0 0


B =

[
1 1
0 0

]
C =

[
1 1
1 1

]
.
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Lemma 4

Let A ∈ Km×n. There exists an orthonormal basis u1, · · · ,un of Kn such that
the family {Au1, · · · , Aun} is orthogonal (in Km).
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Lemma 5

Let A ∈ Km×n and let (u1, · · · ,un) be an orthonormal basis of Kn. Define

vj =

{ Aui
‖Aui‖

if ‖Aui‖ 6= 0

0 if ‖Aui‖ = 0

Let D = diag(‖Au1‖, · · · , ‖Aun‖). Define U = [u1| · · · |un] and
V = [v1| · · · |vn]. The matrix A enjoys the decomposition

A = V DU∗.
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Lemma 6

Let {u1, · · · ,un} be an orthormal basis of eigenvectors for A∗A. Then
‖Aui‖ =

√
λi.
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Definition 2.4

Let A ∈ Km×n be a matrix. There exists a Singular Value Decomposition
(SVD)

A = V SU∗

such that V ∈ Kn×n is an orthonormal basis of eigenvector of AA∗,
U ∈ Km×m is an orthonormal basis of eigenvectors of A∗A and S ∈ Km×n is a
matrix such that dii =

√
λi, for 1 ≤ i ≤ min{m,n} and 0 elsewhere.

U and V are respectively called the right and left singular vectors.
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Exercise 2.4

Prove that A =
∑min{m,n}

i=1

√
λiviu

∗
i .
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Proposition 2.1 (Truncated SVD)

Let A ∈ Km×n be a rank r matrix. There exists r strictly positive numbers
σ1, · · · , σr, r orthonormal vectors in Km v1, · · · ,vr (column wise in a matrix
Vr) and r orthonormal vectors u1, · · · ,ur (stacked in Ur) such that

A = VrSrU
∗
r

where Sr = diag(σ1, · · · , σr).
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Definition 2.5

Let A ∈ Km×n be a matrix and let A = V SU∗ be its singular value
decomposition in which the singular values are numbered in decreasing order of
magnitude. Ak = VkSkU

∗
k is called the (best) rank k approximation of A.
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Exercise 2.5

Find the singular value decompositions and the rank 1 and 2 approximations of
the following matrices.

A =

 1 2
0 0
0 0

 ,
B =

[
0 −1 1
2 0 0

]
.
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Definition 2.6

A norm ‖ · ‖ on the vector space of matrix is said to be a matrix norm (by
opposition to a vector norm) if

1 it is a vector norm

2 it is submultiplicative: for any two matrices A and B such that the
product AB is defined, ‖AB‖ ≤ ‖A‖‖B‖.
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Proposition 2.2

The Frobenius norm is a matrix norm.
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Exercise 2.6

Show that the following are matrix norms:

1 ‖A‖ =
∑

i,j |ai,j |.
2 A ∈ Kn×n, ‖A‖ = nmax i, j|ai,j |.
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Definition 2.7

Let ‖ · ‖V be a vector norm and ‖ · ‖M be a matrix norm. ‖ · ‖V is compatible
with ‖ · ‖M if

‖Ax‖V ≤ ‖A‖M‖x‖V .
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Exercise 2.7

Verify that the ‖ · ‖2 norm is compatible with the Frobenius norm.
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Definition 2.8

Let ‖ · ‖k→k be defined on the set of matrices as

‖A‖k→k := max
x6=0

‖Ax‖k
‖x‖k

.

‖ · ‖k→k is called the operator norm induced by ‖ · ‖V .
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Theorem 2.3

The operator norm is indeed a matrix norm and the vector norm used is
compatible with it.
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Remark 2.3

1 The operator norms need not consider the same norm in the input and
output spaces ... but in this case, we need to review the definition of the
compatibility, which is not important enough here.

2 The k norm can be pretty much any thing, and not necessarily the
Euclidean or other Minkowski norms.
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Proposition 2.3

Operator norms induced by some Minkowski norms are quite common and
should be understood:

1 The maximum column sum norm is induced by the 1 norm:
‖A‖1→1 = max1≤j≤n

∑m
i=1 |aij |.

2 The spectral norm is ‖A 2→ 2 = maxj

√
λj(A∗A) is the largest singular

value.

3 The maximum row sum is induced by the infinity norm:
‖A‖∞→∞ = max1≤i≤m

∑n
j=1 |ai,j |.
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Lemma 7

Let B be a rank k matrix. Then

‖A−Ak‖F ≤ ‖A−B‖F
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Lemma 8

‖A−Ak‖22→2 = σ2
k+1.
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Theorem 2.4

Let A ∈ Km×n and let B be a rank k matrix. Then

‖A−Ak‖2→2 ≤ ‖A−B‖2→2.

Said differently, the truncated matrix Ak is the best rank k approximation of A
when measured in the 2→ 2 norm.
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Definition 2.9

Let A ∈ Km×n. A matrix B ∈ Kn×m is said to be a pseudo-inverse if it
satisfies the following axioms:

1 ABA = A,

2 BAB = B,

3 BA and AB are Hermitian.
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Theorem 2.5

Let A ∈ Km×n. If there exists such a pseudo inverse, it is unique.
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Theorem 2.6

Let A ∈ Km×n be a matrix. There always exists a pseudo inverse.
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Theorem 2.7

Assume A is a square non-singular matrix. Then A† = A−1.
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Proposition 2.4

Let A ∈ Km×n

1 (overdetermined systems, more equations than unknown) If m ≥ n and A
has full rank (n), then A† = (A∗A)−1A∗. It follows A†A = In.

2 (underdetermined systems) If m ≤ n and A has full rank (m), then
A† = A∗(AA∗)−1. It follows AA† = Im.
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