Matrix Analysis: Spectral theorems

Jean-Luc Bouchot

School of Mathematics and Statistics
Beijing Institute of Technology
jlbouchot@bit.edu.cn

2018/11/18
(1) Spectral theorems

Outline

(1) Spectral theorems

Definition 2.1

A matrix $A \in \mathbb{K}^{n \times n}$ is called normal is it commutes with its conjugate transpose: $A^{*} A=A A^{*}$.

Example 2.1

This concept generalizes known matrices:

- Symmetric matrices
- Unitary and orthogonal matrices
- Skew-symmetric matrices

Exercise 2.1

Is the following matrix normal? Unitary? Orthogonal? Symmetric? Skew-symmetric?

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

Conclude that set of normal matrices is a strictly bigger set than the previous examples.

Proposition 2.1

Show that a square matrix A is triangular and normal if and only if A is diagonal.

Theorem 2.1 (Spectral theorem for normal matrices)
Let A be a squared normal matrix. Then there exists an orthonormal basis of eigenvectors.

Remark 2.1

The existence of an orthonormalbasis of eigenvectors is equivalent to the diagonalizability of A by a unitary matrix. Indeed, let $V=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ be the matrix containing the n orthogonal (and normalized!) eigenvectors with respective eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then
(1) V is unitary (see theorem before Schur's triangularization)
(2) $A V=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right) V$.

Note that the converse in the previous theorem is obviously true.

Definition 2.2
A is said to be unitarily diagonalizable if it is diagonalizable via a unitary matrix.

Exercise 2.2

Are all diagonalizable matrices unitary diagonalizable?

Corollary 2.1
Let A be a squared normal matrix and let \mathbf{u} and \mathbf{v} be two eigenvectors with distinct eigenvalues $\lambda \neq \mu$. Then $\langle\mathbf{u}, \mathbf{v}\rangle=0$ (where $\langle\cdot, \cdot\rangle$ denotes the standard Euclidean inner product).

Remark 2.2

Finding the spectral decomposition of a normal matrix is easy:
(1) Find the eigenvalues of the matrix
(2) Find an orthogonal basis of the eigenspaces $\operatorname{Ker}(A-\lambda)$ for all eigenvalues λ (this can be done by finding linearly independent eigenvectors, and then applying Gram-Schmidt)
(3) Stack all the vectors together, keeping the diagonal entries of the diagonal matrix in the right order!

Exercise 2.3

Let $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$. Diagonalize A and verify the orthogonality of the eigenvectors.
Remark: This is a matrix describing the motion of a system of springs of similar length and resistance, and attached to the same masses.

Exercise 2.4

Find an orthogonal matrix U such that $U^{T} A U$ is diagonal, where

$$
A=\left[\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right]
$$

Theorem 2.2

Special normal matrices are easy to recognize: Let A be a normal matrix. The followings hold

- A is Hermitian $\left(A^{*}=A\right)$ if and only if $\sigma(A) \subset \mathbb{R}$.
- A is skew-symmetric $\left(A^{*}=-A\right.$) if and only if $\sigma(A) \subset 1 \mathbb{R}$ (i.e. for all $\lambda \in \sigma(A), \Re(\lambda)=0)$
- A is unitary $\left(A A^{*}=I\right)$ if and only if $|\lambda|=1$ for all $\lambda \in \sigma(A)$.

Exercise 2.5

Characterize all the normal matrices which are also nilpotent.

Theorem 2.3
Let $A, B \in \mathbb{K}^{n \times n}$ be two commuting square matrices and assume that A is normal. Then A^{*} commutes with B.

Corollary 2.2
Assume that A and B are two normal commuting matrices. Then $A B$ is also normal.

Exercise 2.6

Let $A \in \mathbb{R}^{n \times n}$. Define two quadratic forms $Q_{1}, Q_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ as

$$
\begin{aligned}
Q_{1}(\mathbf{x}) & =\mathbf{x}^{T} A \mathbf{x} \\
Q_{2}(\mathbf{x}) & =\frac{1}{2} \mathbf{x}^{T}\left(A+A^{T}\right) \mathbf{x}
\end{aligned}
$$

Show that $Q_{1}(\mathbf{x})=Q_{2}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{n}$.

Definition 2.3
Let $A \in \mathbb{K}^{n \times n}$ be a Hermitian matrix. The scalar function

$$
Q: \begin{array}{ccc}
\mathbb{K}^{n} & \rightarrow & \mathbb{K} \\
\mathbf{x} & \mapsto & \langle A \mathbf{x}, \mathbf{x}\rangle
\end{array}
$$

is called a complex quadratic form.

Theorem 2.4
Let $A \in \mathbb{K}^{n \times n}$. The following statements are equivalent:
(1) A is Hermitian.
(2) $\mathrm{x}^{*} A \mathrm{x} \in \mathbb{R}$, for all $\mathrm{x} \in \mathbb{K}^{n}$.
(3) $A^{*} A=A A^{*}$ and $\sigma(A) \subset \mathbb{R}$.
(9) $S^{*} A S$ is Hermitian for all $S \in \mathbb{K}^{n \times n}$.

Definition 2.4

Let A be a diagonal matrix. The complex quadratic form defined as $Q_{A}(\mathbf{x})=\langle A \mathbf{x}, \mathbf{x}\rangle$ is called a diagonal complex quadratic form.

Exercise 2.7

What are the general formula (based on the coordinates of the vectors and entries of the matrices) for a complex quadratic form and a diagonal form?

Proposition 2.2

Every complex quadratic form can be transformed into a diagonal quadratic form.

Proposition 2.3

Let $A \in \mathbb{K}^{n \times n}$ and let $\lambda_{1}, \cdots, \lambda_{n}$ be its eigenvalues enumerated such that $\lambda_{1} \leq \cdots \leq \lambda_{n}$. (Note: This ordering is possible since the eigenvalues are real!) Then (see homework)

$$
\lambda_{1}\|\mathbf{x}\|_{2}^{2} \leq Q_{A}(\mathbf{x}) \leq \lambda_{n}\|\mathbf{x}\|_{2}^{2}
$$

Exercise 2.8

Let A be a Hermitian matrix. Prove the inequality

$$
\lambda_{1}\|\mathbf{x}\|_{2}^{2} \leq Q_{A}(\mathbf{x}) \leq \lambda_{n}\|\mathbf{x}\|_{2}^{2}
$$

Exercise 2.9

When do you get equalities in the previous proposition?

Theorem 2.5 (Courant-Fisher)

Let $A \in \mathbb{K}^{n \times n}$ be a Hermitian matrix and $1 \leqq k \leq n$. Then

$$
\lambda_{k}=\min _{\operatorname{dim}(V)=k} \max _{\mathbf{x} \in V ;\|\mathbf{x}\|_{2}=1}\langle A \mathbf{x}, \mathbf{x}\rangle=\max _{\operatorname{dim}(V)=n-k+1} \min _{\mathbf{x} \in V ;\|\mathbf{x}\|_{2}=1}\langle A \mathbf{x}, \mathbf{x}\rangle .
$$

Theorem 2.6 (Weyl)
Let A, B be two $n \times n$ Hermitian matrices. Then

$$
\lambda_{k}(A)+\lambda_{1}(B) \leq \lambda_{k}(A+B) \leq \lambda_{k}(A)+\lambda_{n}(B)
$$

