Matrix Analysis: Spectral theorems

Jean-Luc Bouchot

School of Mathematics and Statistics Beijing Institute of Technology jlbouchot@bit.edu.cn

2018/11/18

メロト メポト メヨト メヨト ヨー わらぐ

▲ロト ▲圖ト ▲注ト ▲注ト - 注一 のへで

Outline

Definition 2.1

A matrix $A \in \mathbb{K}^{n \times n}$ is called **normal** is it commutes with its conjugate transpose: $A^*A = AA^*$.

Example 2.1

This concept generalizes known matrices:

- Symmetric matrices
- Unitary and orthogonal matrices
- Skew-symmetric matrices

(ロ) (同) (E) (E) (E)

Is the following matrix normal? Unitary? Orthogonal? Symmetric? Skew-symmetric?

$$A = \left[\begin{array}{rrr} 1 & -1 \\ 1 & 1 \end{array} \right].$$

Conclude that set of normal matrices is a strictly bigger set than the previous examples.

イロン 不同 アイヨン イヨン ヨー わらぐ

Proposition 2.1

Show that a square matrix A is triangular and normal if and only if A is diagonal.

イロト イヨト イミト イミト ニミニ のへで

Theorem 2.1 (Spectral theorem for normal matrices)

Let A be a squared normal matrix. Then there exists an orthonormal basis of eigenvectors.

イロン 不同 アイヨン イヨン ヨー わらぐ

Remark 2.1

The existence of an orthonormalbasis of eigenvectors is equivalent to the diagonalizability of A by a unitary matrix. Indeed, let $V = [\mathbf{v}_1, \ldots, \mathbf{v}_n]$ be the matrix containing the n orthogonal (and normalized!) eigenvectors with respective eigenvalues $\lambda_1, \ldots, \lambda_n$. Then

- \bigcirc V is unitary (see theorem before Schur's triangularization)
- $AV = \operatorname{diag}(\lambda_1, \cdots, \lambda_n)V.$

Note that the converse in the previous theorem is obviously true.

イロン 不可 アイロン トロー うらつ

Definition 2.2

 ${\cal A}$ is said to be unitarily diagonalizable if it is diagonalizable via a unitary matrix.

イロト イヨト イミト イミト ニミニ のへで

Are all diagonalizable matrices unitary diagonalizable?

イロト イヨト イヨト イヨト ニヨー のへで

Jean-Luc Bouchot

Matrix Analysis: Spectral theorems

イロン 不同 アイヨン イヨン ヨー わらぐ

Corollary 2.1

Let A be a squared normal matrix and let \mathbf{u} and \mathbf{v} be two eigenvectors with distinct eigenvalues $\lambda \neq \mu$. Then $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ (where $\langle \cdot, \cdot \rangle$ denotes the standard Euclidean inner product).

Remark 2.2

Finding the spectral decomposition of a normal matrix is easy:

- Ind the eigenvalues of the matrix
- **②** Find an orthogonal basis of the eigenspaces $\operatorname{Ker}(A \lambda)$ for all eigenvalues λ (this can be done by finding linearly independent eigenvectors, and then applying Gram-Schmidt)
- Stack all the vectors together, keeping the diagonal entries of the diagonal matrix in the right order!

イロト 不得 とくほう 不足 とうほ

Matrix Analysis: Spectral theorems

イロン 不可 アイロン トロー うらつ

Exercise 2.3

Let $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$. Diagonalize A and verify the orthogonality of the eigenvectors

Jean-Luc Bouchot

eigenvectors.

Remark: This is a matrix describing the motion of a system of springs of similar length and resistance, and attached to the same masses.

Find an orthogonal matrix U such that $U^T A U$ is diagonal, where

$$A = \left[\begin{array}{rrr} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{array} \right]$$

.

Theorem 2.2

Special normal matrices are easy to recognize: Let ${\cal A}$ be a normal matrix. The followings hold

- A is Hermitian $(A^* = A)$ if and only if $\sigma(A) \subset \mathbb{R}$.
- A is skew-symmetric $(A^* = -A)$ if and only if $\sigma(A) \subset \mathbb{R}$ (i.e. for all $\lambda \in \sigma(A), \Re(\lambda) = 0$)
- A is unitary $(AA^* = I)$ if and only if $|\lambda| = 1$ for all $\lambda \in \sigma(A)$.

イロン 不同 とくき とくき とうき

Characterize all the normal matrices which are also nilpotent.

Theorem 2.3

Let $A, B \in \mathbb{K}^{n \times n}$ be two commuting square matrices and assume that A is normal. Then A^* commutes with B.

Corollary 2.2

Assume that A and B are two normal commuting matrices. Then AB is also normal.

Let $A \in \mathbb{R}^{n \times n}$. Define two quadratic forms $Q_1, Q_2 : \mathbb{R}^n \to \mathbb{R}$ as

$$Q_1(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$$
$$Q_2(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T (A + A^T) \mathbf{x}$$

Show that $Q_1(\mathbf{x}) = Q_2(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.

Definition 2.3

Let $A \in \mathbb{K}^{n \times n}$ be a Hermitian matrix. The scalar function

$$Q: \begin{array}{ccc} \mathbb{K}^n & \to & \mathbb{K} \\ \mathbf{x} & \mapsto & \langle A\mathbf{x}, \mathbf{x} \rangle \end{array}$$

is called a complex quadratic form.

Theorem 2.4

Let $A \in \mathbb{K}^{n \times n}$. The following statements are equivalent:

- A is Hermitian.
- **2** $\mathbf{x}^* A \mathbf{x} \in \mathbb{R}$, for all $\mathbf{x} \in \mathbb{K}^n$.
- $\ \, {\bf 3} \ \, A^*A = AA^* \ \, {\rm and} \ \, \sigma(A) \subset \mathbb{R}.$
- S^*AS is Hermitian for all $S \in \mathbb{K}^{n \times n}$.

イロン 不同 アイヨン イヨン ヨー わらぐ

Definition 2.4

Let A be a diagonal matrix. The complex quadratic form defined as $Q_A(\mathbf{x}) = \langle A\mathbf{x}, \mathbf{x} \rangle$ is called a diagonal complex quadratic form.

メロト メポト メヨト メヨト ヨー わらぐ

What are the general formula (based on the coordinates of the vectors and entries of the matrices) for a complex quadratic form and a diagonal form?

イロン 不同 アイヨン イヨン ヨー わらぐ

Proposition 2.2

Every complex quadratic form can be transformed into a diagonal quadratic form.

Proposition 2.3

Let $A \in \mathbb{K}^{n \times n}$ and let $\lambda_1, \dots, \lambda_n$ be its eigenvalues enumerated such that $\lambda_1 \leq \dots \leq \lambda_n$. (Note: This ordering is possible since the eigenvalues are real!) Then (see homework)

$$\lambda_1 \|\mathbf{x}\|_2^2 \le Q_A(\mathbf{x}) \le \lambda_n \|\mathbf{x}\|_2^2.$$

イロン 不可 アイロン トロー うらつ

Let \boldsymbol{A} be a Hermitian matrix. Prove the inequality

$$\lambda_1 \|\mathbf{x}\|_2^2 \le Q_A(\mathbf{x}) \le \lambda_n \|\mathbf{x}\|_2^2.$$

When do you get equalities in the previous proposition?

Theorem 2.5 (Courant-Fisher) Let $A \in \mathbb{K}^{n \times n}$ be a Hermitian matrix and $1 \leq k \leq n$. Then $\lambda_k = \min_{\dim(V)=k} \max_{\mathbf{x} \in V; \|\mathbf{x}\|_2 = 1} \langle A\mathbf{x}, \mathbf{x} \rangle = \max_{\dim(V)=n-k+1} \min_{\mathbf{x} \in V; \|\mathbf{x}\|_2 = 1} \langle A\mathbf{x}, \mathbf{x} \rangle.$

メロト メポト メヨト メヨト ヨー わらぐ

Jean-Luc Bouchot

Theorem 2.6 (Weyl)

Let A,B be two $n\times n$ Hermitian matrices. Then

 $\lambda_k(A) + \lambda_1(B) \le \lambda_k(A+B) \le \lambda_k(A) + \lambda_n(B).$