Matrix Analysis: Schur's triangularization

Jean-Luc Bouchot

School of Mathematics and Statistics
Beijing Institute of Technology jlbouchot@bit.edu.cn

2018/11/18
(1) The Jordan canonical form

Outline

(1) The Jordan canonical form

Definition 2.1
Two matrices A and B are called unitary equivalent if there exists a unitary matrix U such that

$$
A=U B U^{*}
$$

We will write this as $A \approx B$.

Exercise 2.1

Let A and B be two matrices such that $A \approx B$. Show that

$$
\|A\|_{F}=\|B\|_{F}
$$

Theorem 2.1 (Schur's triangularization)

Let $A \in \mathbb{K}^{n \times n}$ with (repeated, potentially commplex) eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$. Then A is unitarily equivalent to an upper triangular matrix T whose diagonal entries are $t_{i, i}=\lambda_{i}$: there exists a unitary matrix U such that

$$
A=U\left[\begin{array}{cccc}
\lambda_{1} & x & \cdots & x \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right] U^{*}
$$

Exercise 2.2

Show the following statements
(1) A similar statement is valid in which the triangular matrix is lower.
(2) Such a decomposition is not unique.

Exercise 2.3

Let $A \in \mathbb{K}^{n \times n}$ with eigenvalues (counting multiplicities) $\lambda_{1}, \cdots, \lambda_{n}$. Show that

$$
\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq \sum_{i, j=1}^{n}\left|a_{i, j}\right|^{2}
$$

Theorem 2.2 (Cayley-Hamilton)
Let $A \in \mathbb{K}^{n \times n}$ and $p_{A}(t)$ its characteristic polynomial. Then

$$
p_{A}(A)=0 .
$$

Exercise 2.4

Let A be a matrix, S be a non-singular matrix and p a polynomial. Then

$$
p\left(S^{-1} A S\right)=S^{-1} p(A) S
$$

Conclude that if two matrices are equivalent, then so are all matrices created by applying the same polynomial to A and B.

Exercise 2.5

Carry out the actual computations in the previous proof.

Theorem 2.3
For all $A \in \mathbb{K}^{n \times n}$ and for all $\varepsilon>0$, there exists a diagonalizable matrix B such that

$$
\begin{equation*}
\|A-B\|_{F}<\varepsilon . \tag{2.1}
\end{equation*}
$$

Theorem 2.4
Given $A \in \mathbb{K}^{n \times n}$ with distinct eigenvalues $\lambda_{1}, \cdots, \lambda_{r}$, there exists a non-singular matrix S such that

$$
A=S \operatorname{diag}\left(T_{1}, \cdots, T_{r}\right) S^{-1}
$$

where T_{i} are upper triangular matrices such that

$$
T_{i}=\left[\begin{array}{cccc}
\lambda_{i} & * & \cdots & * \\
0 & \lambda_{i} & \ddots & \vdots \\
\vdots & \ddots & \ddots & * \\
0 & \cdots & 0 & \lambda_{i}
\end{array}\right]
$$

for $1 \leq i \leq r$.

Lemma 1

Let $A \in \mathbb{K}^{m \times m}$ and $B \in \mathbb{K}^{n \times n}$ be two matrices such that $\sigma(A) \cap \sigma(B)=\varnothing$. Then for any choice of $M \in \mathbb{K}^{m \times n}$

$$
\left[\begin{array}{cc}
A & M \\
0 & B
\end{array}\right] \sim\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]
$$

