Matrix Analysis: Review of linear algebra

Jean-Luc Bouchot
School of Mathematics and Statistics
Beijing Institute of Technology
jlbouchot@bit.edu.cn

2018/11/18

Definition 1.1

Let V be a finite dimensional vector space. The mapping $\|\cdot\|: V \rightarrow \mathbb{R}$ is called a vector norm if
(1) $\|\mathbf{v}\| \geq 0$, for all $\mathbf{v} \in V$ (positivity),
(2) $\|\mathbf{v}\|=0 \Leftrightarrow \mathbf{v}=0_{V}$ (definition),
(3) $\|\alpha \mathbf{v}\|=|\alpha|\|\mathbf{v}\|$ for all $\alpha \in \mathbb{K}$ and $\mathbf{v} \in V$ (homogeneity),
(1) $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$ for all $\mathbf{u}, \mathbf{v} \in V$ (triangle inequality).

Example 1.1

Let $V=\mathbb{R}^{n}$. The following define the traditional Minkowski p norms, for a real number $p \geq 1$:

$$
\|\mathbf{x}\|_{p}=\left(\sum\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Some people call this also Hölder's norm.
Particular examples include:

- $p=2$: Euclidean norm
- $p=1$: Manhattan or Taxicab norm
- As $p \rightarrow \infty$, we define the infinity norm as $\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$.

Proposition 1.1

Let $\infty \geq p \geq q \geq 1$. It holds

$$
\|\mathbf{x}\|_{p} \leq\|\mathbf{x}\|_{q} \leq n^{1 / q-1 / p}\|\mathbf{x}\|_{p}
$$

Definition 1.2
Two norms N_{1} and N_{2} are said to be equivalent if there exist two constants α and β such that

$$
\alpha N_{1}(\mathbf{v}) \leq N_{2}(\mathbf{v}) \leq \beta N_{1}(\mathbf{v}), \text { for all } \mathbf{v} \in V
$$

Proposition 1.2

Assume $\left(\mathbf{x}^{(k)}\right)_{k}$ is a convergence sequence with respect to a norm N_{1}. If N_{2} is equivalent to N_{1} then $\left(\mathbf{x}^{(k)}\right)_{k}$ is also convergence with respect to N_{2}.

Proposition 1.3

On a finite dimensional vector space, all norms are equivalent.

Example 1.2

Let N be defined as

$$
N(\mathbf{u})=\left(\left|2 u_{1}+3 u_{2}\right|^{2}+\left|u_{2}\right|^{2}\right)^{1 / 2}
$$

Does N define a norm?

Proposition 1.4
Let $A: V \rightarrow W$ be a linear function where $\operatorname{dim}(V)=n$ and let $\|\cdot\|$ define a norm on W. If $r k(A)=n$ then $\|A(\mathbf{x})\|$ is a norm.

Proposition 1.5
Let \mathbf{u} and \mathbf{v} be two n-dimensional vectors. Then Hölder's inequality holds

$$
\sum_{i=1}^{n}\left|u_{i} v_{i}\right| \leq\|\mathbf{u}\|_{p}\|\mathbf{v}\|_{q}
$$

where p and q are such that $1 / p+1 / q=1$.

Lemma 1 (Young's inequality for product)
Let a and b be non-negative real numbers and $1<p \leq q<\infty$. It holds

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

Definition 1.3

A vector space $(V,\|\cdot\|)$ is said to be a normed vector space if

- V is a vector space over \mathbb{K} and
- $\|\cdot\|$ is a norm.

If moreover V is complete (every Cauchy sequence in V converge in V) we call it a Banach space.

Definition 1.4

Let V be a vector space over the field \mathbb{K}. The binary function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{K}$ is called an inner product if for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$
(1) $\langle\mathbf{u}, \mathbf{u}\rangle \geq 0$,
(2) $\langle\mathbf{u}, \mathbf{u}\rangle=0 \Leftrightarrow \mathbf{v}=0$,
(3) $\langle\alpha \mathbf{u}, \mathbf{v}\rangle=\alpha\langle\mathbf{u}, \mathbf{v}\rangle$, for all scalar $\alpha \in \mathbb{K}$,
(1) $\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle$,
(0) $\langle\mathbf{u}, \mathbf{v}\rangle=\overline{\langle\mathbf{v}, \mathbf{u}\rangle}$.

One may say that the inner product is a positive definite sesquilinear form.

Proposition 1.6
Let V be a vector space and $\langle\cdot, \cdot\rangle$ be an inner product. The mapping $\|\cdot\|$ defined for $\mathbf{u} \in V$ as $\|\mathbf{u}\|^{2}=\langle\mathbf{u}, \mathbf{u}\rangle$ is a norm on V.

Proposition 1.7 (Cauchy-Schwarz)

Let $\langle\cdot, \cdot\rangle$ be an inner product on V. It holds, for all $\mathbf{u}, \mathbf{v} \in V$

$$
|\langle\mathbf{u}, \mathbf{v}\rangle| \leq\|\mathbf{u}\|\|\mathbf{v}\|,
$$

where $\|\cdot\|$ is the norm induced by the inner product.

Exercise 1.1

Show that the equality in Cauchy-Schwarz inequality occurs if and only if \mathbf{u} and \mathbf{v} are linearly dependent.

Definition 1.5
A vector space equipped with an inner product is called an inner product space.
If the space is also complete, we call it a Hilbert space.

Exercise 1.2

Show that the trace defines an inner product on the space of matrices:

$$
\langle A, B\rangle=\operatorname{tr}\left(B^{*} A\right)
$$

The associated norm is called the Frobenius, denoted $\|\cdot\|_{F}$. What is $\|A\|_{F}^{2}$?

Proposition 1.8

An inner product $\langle\cdot, \cdot\rangle$ fulfills the following basic properties (in an vector space V on the field of scalar $\mathbb{K})$:

- Let $\mathbf{u} \in V, T_{\mathbf{u}}: V \rightarrow \mathbb{K}$ defined for all $\mathbf{v} \in V$ as $T_{\mathbf{u}}(\mathbf{v})=\langle\mathbf{u}, \mathbf{v}\rangle$ is a linear map from V to \mathbb{K}.
- $\langle 0, \mathbf{u}\rangle=0=\langle\mathbf{u}, 0\rangle$ for every $\mathbf{u} \in V$.
- $\langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle$, for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$.
- $\langle\mathbf{u}, \lambda \mathbf{v}\rangle=\bar{\lambda}\langle\mathbf{u}, \mathbf{v}\rangle$, for every $\mathbf{u}, \mathbf{v} \in V$ and $\lambda \in \mathbb{K}$.

Definition 1.6
Let $V,\langle\cdot, \cdot\rangle$ be an inner product space. Two vectors \mathbf{u}, \mathbf{v} are called orthogonal $\langle\mathbf{u}, \mathbf{v}\rangle=0$.

Definition 1.7
Let $V,\langle\cdot, \cdot\rangle$ be an inner product space. Two families of vectors S and T are called orthogonal if

$$
\langle\mathbf{u}, \mathbf{v}\rangle=0, \text { for all } \mathbf{u} \in S, \mathbf{v} \in T
$$

Exercise 1.3

Prove the Pythagorean theorem: if \mathbf{u} and \mathbf{v} are two orthogonal vectors, then

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}
$$

where $\|\cdot\|$ denotes the norm induced by the given scalar product.

Definition 1.8
A vector is said to be unit norm or normalized if $\|\mathbf{u}\|=1$. A family of vectors is said to be orthonormal if it is a family of unit-norm vectors and orthogonal.

Proposition 1.9
A family of p vectors is orthonormal if and only if the matrix U containing those vectors column-wise is such that $U^{T} U=I_{p}$.

Proposition 1.10 (Gram-Schmidt)

Let $S=\left(\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right)$ be a linearly independent family vectors. Then there exists an orthonormal family $\left(\mathbf{w}_{1}, \cdots, \mathbf{w}_{k}\right)$ such that $\operatorname{span}\left(\mathbf{v}_{1}, \cdots, \mathbf{v}_{j}\right)=\operatorname{span}\left(\mathbf{w}_{1}, \cdots, \mathbf{w}_{j}\right)$ for all $1 \leq j \leq k$.

Definition 1.9
A square matrix $A \in \mathbb{K}^{n \times n}$ is called unitary (resp. orthogonal) if

$$
A^{*} A=A A^{*}=I_{n} \quad\left(\text { resp. } A^{T} A=A A^{T}=I_{n}\right) .
$$

Remark 1.1
If A and B are two unitary matrices, then so are $A^{T}, A^{*}, \bar{A}, A B$.

Exercise 1.4

Let U be a unitary matrix and λ one of its eigenvalues. Show that $|\lambda|=1$. What can be said about $|\operatorname{det}(U)|$?. What does it mean for a real orthogonal matrix?

Proposition 1.11

Let $A \in \mathbb{K}^{n \times n}$. The following statements are equivalent
(1) A is unitary.
(2) A preserves the ℓ^{2} norm: $\|A \mathbf{u}\|=\|\mathbf{u}\|$, for all $\mathbf{u} \in \mathbb{K}^{n}$.
(3) The columns of A form an orthonormal system.

Exercise 1.5

Are sums and product of unitary matrices also unitary?

Exercise 1.6

Let U be a unitary matrix. Show that two vectors \mathbf{x} and \mathbf{y} are orthogonal if and only if $U \mathbf{x}$ and $U \mathbf{y}$ are orthogonal.

Exercise 1.7

Let U be a unitary matrix. Show that $\operatorname{adj}(U) / \operatorname{det}(U)$ is unitary.

