Matrix Analysis: Review of linear algebra

Jean-Luc Bouchot

School of Mathematics and Statistics Beijing Institute of Technology jlbouchot@bit.edu.cn

2018/11/18

Jean-Luc Bouchot Matrix Analysis: Review of linear algebra

イロン 不同 アイヨン イヨン ヨー わらぐ

Jean-Luc Bouchot Matrix Analysis: Review of linear algebra

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let V be a finite dimensional vector space. The mapping $\|\cdot\|: V \to \mathbb{R}$ is called a vector norm if

• $\|\mathbf{v}\| \ge 0$, for all $\mathbf{v} \in V$ (positivity),

$$\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = 0_V \text{ (definition)},$$

- $\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\| \text{ for all } \alpha \in \mathbb{K} \text{ and } \mathbf{v} \in V \text{ (homogeneity),}$
- $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\| \text{ for all } \mathbf{u}, \mathbf{v} \in V \text{ (triangle inequality)}.$

イロン 不同 とくほう イヨン しほし わなべ

Example 1.1

Let $V = \mathbb{R}^n$. The following define the traditional Minkowski p norms, for a real number $p \ge 1$:

$$\|\mathbf{x}\|_p = \left(\sum |x_i|^p\right)^{1/p}.$$

Some people call this also Hölder's norm. Particular examples include:

- p = 2: Euclidean norm
- p = 1: Manhattan or Taxicab norm
- As $p \to \infty$, we define the *infinity norm* as $\|\mathbf{x}\|_{\infty} = \max_i |x_i|$.

(日) (同) (日) (日) (日)

Let $\infty \ge p \ge q \ge 1$. It holds

$$\|\mathbf{x}\|_p \le \|\mathbf{x}\|_q \le n^{1/q - 1/p} \|\mathbf{x}\|_p.$$

▲ロン ▲園 > ▲ 画 > ▲ 画 > ● ● ●

Two norms N_1 and N_2 are said to be equivalent if there exist two constants α and β such that

 $\alpha N_1(\mathbf{v}) \leq N_2(\mathbf{v}) \leq \beta N_1(\mathbf{v}), \text{ for all } \mathbf{v} \in V.$

メロト メポト メヨト メヨト ヨー わらぐ

Assume $(\mathbf{x}^{(k)})_k$ is a convergence sequence with respect to a norm N_1 . If N_2 is equivalent to N_1 then $(\mathbf{x}^{(k)})_k$ is also convergence with respect to N_2 .

(日) (同) (日) (日) (日)

On a finite dimensional vector space, all norms are equivalent.

Example 1.2

Let \boldsymbol{N} be defined as

$$N(\mathbf{u}) = \left(|2u_1 + 3u_2|^2 + |u_2|^2 \right)^{1/2}.$$

Does N define a norm?

Let $A: V \to W$ be a linear function where $\dim(V) = n$ and let $\|\cdot\|$ define a norm on W. If rk(A) = n then $\|A(\mathbf{x})\|$ is a norm.

イロト イヨト イヨト イヨト ヨー わへで

Let \mathbf{u} and \mathbf{v} be two n-dimensional vectors. Then Hölder's inequality holds

$$\sum_{i=1}^n |u_i v_i| \le \|\mathbf{u}\|_p \|\mathbf{v}\|_q,$$

where p and q are such that 1/p + 1/q = 1.

Lemma 1 (Young's inequality for product)

Let a and b be non-negative real numbers and 1 . It holds

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

イロン 不良 アイビン イビン ほうろくの

A vector space $(V, \|\cdot\|)$ is said to be a normed vector space if

- V is a vector space over \mathbbm{K} and
- || · || is a norm.

If moreover V is complete (every Cauchy sequence in V converge in V) we call it a Banach space.

イロン 不同 とくほう イヨン しほし わなべ

Let V be a vector space over the field K. The binary function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{K}$ is called an inner product if for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ ($\mathbf{u}, \mathbf{u} \rangle \ge 0$, ($\mathbf{u}, \mathbf{u} \rangle = 0 \Leftrightarrow \mathbf{v} = 0$, ($\mathbf{u}, \mathbf{u} \rangle = 0 \Leftrightarrow \mathbf{v} = 0$, ($\mathbf{u}, \mathbf{u} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle$, for all scalar $\alpha \in \mathbb{K}$, ($\mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$, ($\mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$.

One may say that the inner product is a positive definite sesquilinear form.

Let V be a vector space and $\langle \cdot, \cdot \rangle$ be an inner product. The mapping $\|\cdot\|$ defined for $\mathbf{u} \in V$ as $\|\mathbf{u}\|^2 = \langle \mathbf{u}, \mathbf{u} \rangle$ is a norm on V.

(日) (同) (日) (日) (日)

Proposition 1.7 (Cauchy-Schwarz)

Let $\langle \cdot, \cdot \rangle$ be an inner product on V. It holds, for all $\mathbf{u}, \mathbf{v} \in V$

 $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\|,$

where $\|\cdot\|$ is the norm induced by the inner product.

イロン 不同 アイヨン イヨン ヨー わらぐ

Show that the equality in Cauchy-Schwarz inequality occurs if and only if ${\bf u}$ and ${\bf v}$ are linearly dependent.

(日) (同) (日) (日) (日)

A vector space equipped with an inner product is called an inner product space.

If the space is also complete, we call it a Hilbert space.

イロト イヨト イヨト トヨー シタの

Show that the trace defines an inner product on the space of matrices:

$$\langle A, B \rangle = tr(B^*A).$$

The associated norm is called the **Frobenius**, denoted $\|\cdot\|_F$. What is $\|A\|_F^2$?

An inner product $\langle \cdot, \cdot \rangle$ fulfills the following basic properties (in an vector space V on the field of scalar \mathbb{K}):

- Let $\mathbf{u} \in V$, $T_{\mathbf{u}} : V \to \mathbb{K}$ defined for all $\mathbf{v} \in V$ as $T_{\mathbf{u}}(\mathbf{v}) = \langle \mathbf{u}, \mathbf{v} \rangle$ is a linear map from V to \mathbb{K} .
- $\langle 0, \mathbf{u} \rangle = 0 = \langle \mathbf{u}, 0 \rangle$ for every $\mathbf{u} \in V$.
- $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$, for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$.
- $\langle \mathbf{u}, \lambda \mathbf{v} \rangle = \overline{\lambda} \langle \mathbf{u}, \mathbf{v} \rangle$, for every $\mathbf{u}, \mathbf{v} \in V$ and $\lambda \in \mathbb{K}$.

イロン イタン イヨン イヨン 三日

Let $V, \langle \cdot, \cdot \rangle$ be an inner product space. Two vectors \mathbf{u}, \mathbf{v} are called orthogonal

 $\langle \mathbf{u}, \mathbf{v} \rangle = 0.$

Let $V,\langle\cdot,\cdot\rangle$ be an inner product space. Two families of vectors S and T are called orthogonal if

 $\langle \mathbf{u}, \mathbf{v} \rangle = 0$, for all $\mathbf{u} \in S, \mathbf{v} \in T$.

イロト イヨト イヨト イヨト ヨー わへで

Prove the Pythagorean theorem: if ${\bf u}$ and ${\bf v}$ are two orthogonal vectors, then

$$|\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2,$$

where $\|\cdot\|$ denotes the norm induced by the given scalar product.

A vector is said to be unit norm or normalized if $||\mathbf{u}|| = 1$. A family of vectors is said to be orthonormal if it is a family of unit-norm vectors and orthogonal.

イロト イヨト イヨト イヨト ニヨー のへで

A family of p vectors is orthonormal if and only if the matrix U containing those vectors column-wise is such that $U^T U = I_p$.

メロト メポト メヨト メヨト ヨー わらぐ

Proposition 1.10 (Gram-Schmidt)

Let $S = (\mathbf{v}_1, \dots, \mathbf{v}_k)$ be a linearly independent family vectors. Then there exists an orthonormal family $(\mathbf{w}_1, \dots, \mathbf{w}_k)$ such that $\operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_j) = \operatorname{span}(\mathbf{w}_1, \dots, \mathbf{w}_j)$ for all $1 \leq j \leq k$.

イロン 不同 アイヨン イヨン ヨー わらぐ

A square matrix $A \in \mathbb{K}^{n \times n}$ is called unitary (resp. orthogonal) if

$$A^*A = AA^* = I_n$$
 (resp. $A^TA = AA^T = I_n$).

▲ロン ▲園 > ▲ 画 > ▲ 画 > ● ● ●

Remark 1.1

If A and B are two unitary matrices, then so are $A^T, A^*, \overline{A}, AB$.

Let U be a unitary matrix and λ one of its eigenvalues. Show that $|\lambda| = 1$. What can be said about $|\det(U)|$?. What does it mean for a real orthogonal matrix?

イロン 不同 アイヨン イヨン ヨー わらぐ

Let $A \in \mathbb{K}^{n \times n}$. The following statements are equivalent

- A is unitary.
- **2** A preserves the ℓ^2 norm: $||A\mathbf{u}|| = ||\mathbf{u}||$, for all $\mathbf{u} \in \mathbb{K}^n$.
- **③** The columns of A form an orthonormal system.

イロン 不同 アイヨン イヨン ヨー わらぐ

Are sums and product of unitary matrices also unitary?

Let U be a unitary matrix. Show that two vectors \mathbf{x} and \mathbf{y} are orthogonal if and only if $U\mathbf{x}$ and $U\mathbf{y}$ are orthogonal.

くロン 不得入 不良人 不良人 一日

Let U be a unitary matrix. Show that $adj(U)/\det(U)$ is unitary.