SUGGESTED EXERCISES: MATRIX ANALYSIS

JEAN-LUC BOUCHOT

1. Review of Linear algebra

Homework 1. Show that $\operatorname{tr}\left(A^{*} A\right)=0 \Leftrightarrow A=0$.
Homework 2. True or false (and justify) the following sets are multiplicative groups

- $G_{1}=\left\{A \in \mathbb{R}^{n \times n}: \operatorname{det}(A) \neq 0\right\}$.
- $G_{2}=\left\{A \in \mathbb{R}^{n \times n}:|\operatorname{det}(A)|=1\right\}$.
- $G_{3}=\left\{A \in \mathbb{R}^{n \times n}: \operatorname{det}(A) \neq 0\right.$ and $\left.a_{i, j} \in \mathbb{N}\right\}$.
- $G_{4}=\left\{A \in \mathbb{R}^{n \times n}: \operatorname{det}(A) \neq 0\right.$ and $\left.a_{i, j} \in \mathbb{Z}\right\}$.

Homework 3. Given $A \in \mathbb{K}^{m \times n}$, prove or disprove the following statements (remember that A^{*} is the adjoint of A, i.e. its conjugate transpose - this is equivalent to the transpose of a matrix in case $\mathbb{K}=\mathbb{R}$).
(1) $r k\left(A^{*}\right)=r k(A)$.
(2) $\operatorname{dim}(\operatorname{ker}(A))=\operatorname{dim}\left(\operatorname{ker}\left(A^{*}\right)\right)$.
(3) $\operatorname{ker}(A)=\operatorname{ker}\left(A^{*} A\right)$.
(4) $\operatorname{dim}(\operatorname{ker}(A))=\operatorname{dim}\left(\operatorname{ker}\left(A^{*} A\right)\right)$.
(5) $r k(A)=r k\left(A^{*} A\right)$.

Homework 4. Prove that $A B=0 \Leftrightarrow R(B) \subset \operatorname{ker}(A)$.
Homework 5. (1) Let A and B be two square matrices. Assume that A is invertible. Show that $p_{A B}(x)=$ $p_{B A}(x)$.
(2) Assume both A and B are singular. Show that $p_{A B}(x)=p_{B A}(x)$.
(3) What happens in case $A \in \mathbb{K}^{m \times n}$ and $B \in \mathbb{K}^{n \times m}$.

Homework 6. Let $A \in \mathbb{K}^{n \times n}$ and let p denotes any polynomial. Show that if (λ, \mathbf{x}) is an eigenpair of A then $(p(\lambda), \mathbf{x})$ is an eigenpair of $p(A)$. Use this to prove the theorem of Cayley-Hamilton in case of diagonalizable matrices: $p_{A}(A)=0$. (You may also prove the theorem in a more general form, i.e. not necessarily when A is diagonalizable. In this case, you can use the fact that matrices over \mathbb{C} which are diagonalizable form a dense subset of $\mathbb{C}^{n \times n}$ and then use this to conclude about matrices with entries in \mathbb{R}.)

Homework 7. (1) Let $A, B \in \mathbb{K}^{n \times n}$. Show that $A B=I \Leftrightarrow B A=I$.
(2) Show that this is no longer true in case $A \in \mathbb{K}^{m \times n}$ and $B \in \mathbb{K}^{n \times m}$.

Homework 8. Diagonalize (if possible) the following matrices and factor their characteristic polynomials in \mathbb{R} and \mathbb{C}.
(1) $A=\left[\begin{array}{cc}6 & -1 \\ 2 & 3\end{array}\right]$.
(2) $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1\end{array}\right]$.
(3) $A=\left[\begin{array}{lll}2 & 4 & 6 \\ 0 & 2 & 2 \\ 0 & 0 & 4\end{array}\right]$.
(4) $A=\left[\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right]$.

[^0]Homework 9 (Beginning of Exercises for Week 2). Assume A and B are two non-singular matrices. Prove that

$$
\operatorname{adj}(A B)=\operatorname{adj}(B) \cdot \operatorname{adj}(A)
$$

Homework 10. Let $A \in \mathbb{R}^{n \times n}$, for $n \geq 2$. Prove that

$$
\operatorname{adj}(\operatorname{adj}(A))=(\operatorname{det}(A))^{n-2} A
$$

Homework 11. Let S be a subset of a vector space V.
(1) What can be said about $\operatorname{dim}(\operatorname{span}(S))$?
(2) Let $V=C^{\infty}(\mathbb{R}, \mathbb{R})$ the set of infinitely differentiable functions. Is V finite or infinite dimensional?

Homework 12. Consider the following three basis of $V=\mathbb{R}_{2}[x]$:

- $S=\left(x \mapsto 1, x \mapsto x, x \mapsto x^{2}\right)$,
- $T=\left(x \mapsto 1, x \mapsto 1+x, x \mapsto 1+x^{2}\right)$,
- $U=\left(x \mapsto x^{2}+1, x \mapsto 1+x, x \mapsto x+x^{2}\right)$,

Consider the following mapping:

$$
M: \begin{array}{ll}
\mathbb{R}_{2}[x] & \rightarrow \mathbb{R}_{2}[x] \\
p & \mapsto p^{\prime}+X p^{\prime}
\end{array}
$$

(1) Show that M is a linear transformation.
(2) Compute its matrix representations when looking at is using all the different basis (i.e. U for both input and output spaces, T for both input and output spaces, and then U).
(3) Show that all these matrices are similar to each other. What is the P matrix appearing in the equivalence
(4) Compute now the matrix of this linear transformation when the input and output basis are not the same. (i.e. 6 matrices in total). Show that for all of these matrices, there exists a pair of non-singular matrices P and Q such that $A=Q B P^{-1}$ (where A is one of those matrices and B is another one). What do P and Q correspond to?
Homework 13. Let $A=\left(\begin{array}{ccc}0 & a & b \\ a & 0 & c \\ b & c & 0\end{array}\right)$ for some $a, b, c \in \mathbb{R}$. Fow which values of a, b, c is A invertible?
Homework 14. Let $\left(x_{i}\right)_{i=1}^{n}$ be n numbers in \mathbb{R}. Let A be the matrix such that $a_{i, j}=x_{i}^{j-1}$. Show that A is invertible $\Leftrightarrow x_{i} \neq x_{j}$ for $i \neq j$.
Homework 15. Let $A \in \mathbb{R}^{n \times n}$. Assume that for all $1 \leq i \leq n, \sum_{j=1}^{n} a_{i, j}=1$. Prove that $\lambda=1$ is an eigenvalue and give one of its eigenvectors.
Homework 16. Let $t \in \mathbb{R}$ and let $A=\left[\begin{array}{ccccc}1 & t & t & \cdots & t \\ t & 1 & t & \cdots & t \\ t & \vdots & \ddots & \cdots & t \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ t & t & t & \cdots & 1\end{array}\right] \in \mathbb{R}^{n \times n}$. Find the determinant, eigenvalues, eigenvectors of the matrix A and diagonalize it.

Homework 17. Let $A \in \mathbb{K}^{n \times n}$ and assume A is diagonalizable.
(1) Compute, using a power series, $\exp (A)$. Verify, by analyzing the continuity of the partial sums, that this operation is well-defined!
(2) Does it hold that $\exp (A+B)=\exp (A) \exp (B)$. If yes, prove it, if no, give an example and a condition for the formula to be true.
(3) Assume moreover $A^{3}=0$. What is $\exp (A)$?
(4) What is $\exp \left(A^{T}\right)$?
(5) Assume (λ, \mathbf{x}) is an eigenpair of A. What can be said about the eigenvalues and / or eigenvectors of $\exp (A) ?$
Homework 18. Let \mathbf{x} and \mathbf{y} be two vectors in \mathbb{K}^{n}.
(1) What is $r k\left(\mathbf{x y}^{*}\right)$?
(2) Let $A=\left[\begin{array}{cc}0 & \mathbf{x} \\ \mathbf{y}^{*} & a\end{array}\right]$, where $a \in \mathbb{K}$. Compute the characteristic polynomial of A. Show that $r k(A) \leq$ 2.

Homework 19. Let $A, B, S \in \mathbb{K}^{n \times n}$ with S non-singular. Show that $A B=B A$ if and only if $S^{-1} A S$ commmutes with $S^{-1} B S$.

Homework 20. Let A and B be two diagonalizable matrices. Show that $A B=B A$ if and only if A and B are simultaneously diagonalizable (i.e. via the same basis).
Homework 21. Let $A \in \mathbb{R}^{n \times n}$ and $t \in \mathbb{R}$. Show that $p_{A+t I}(\lambda)=p_{A}(\lambda-t)$. How do the eigenvalues of $A+t I$ relate to those of A ?

Homework 22. Let $A \in \mathbb{K}^{n \times n}$.
(1) Let $\lambda \in \sigma(A)$ with multiplicity (geometric AND algebraic) 1. Show that $r k(A-\lambda I)=n-1$.
(2) Conversely, if $r k(A-\lambda I)=n-1$, is λ an eigenvalue of A ? If yes, does it necessarily have (which?) multiplicity 1 ?
Homework 23. Let $A \in \mathbb{K}^{n \times n}$. Show that its characteristic polynomial reads

$$
p_{A}(\lambda)=-\lambda^{3}+\operatorname{tr}(A) \lambda^{2}-\operatorname{tr}(\operatorname{adj}(A)) t+\operatorname{det}(A)
$$

Homework 24. Prove the inequality between the ℓ_{1}, ℓ_{2} and ℓ_{∞} norms.
Homework 25. Let $V=\{f:[0,1] \rightarrow \mathbb{R}\}$. Show that the following defines an inner product:

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) \mathrm{d} x
$$

Homework 26. Is the following matrix diagonalizable?

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

Compute its eigenvalues and eigenvectors.
Let a_{i} represent the $i^{\text {th }}$ column of A. If the columns of A are linearly independent, use Gram-Schmidt to transform the matrix A into an orthonormal basis. If they are not, reduce the set of columns to a linear independent set, then extend it to a basis of \mathbb{R}^{3} and then orthonormalize it.
Homework 27. Let $\mathbf{x}=(1,2,3,0)^{T}, \mathbf{y}=(1,2,0,0)^{T}$, and $\mathbf{z}=(1,0,0,1)^{T}$ be three vectors in \mathbb{R}^{4}. Expand this family of vector into a basis and orthonormalize it.
Homework 28. Let $x_{0}, \cdots x_{n}$ be $n+1$ distinct points in \mathbb{R} and consider $V=\mathbb{R}_{n}[x]$ the set of polynomials of degree up to n.

Show that, given $p, q \in V$,

$$
\langle p, q\rangle=\sum_{i=0}^{n} p\left(x_{i}\right) q\left(x_{i}\right)
$$

defines an inner product.
Homework 29. Perform Gram Schmidt on the following family of vectors: $\mathbf{u}=[6,3,2]^{T}, \mathbf{v}=[6,6,1]^{T}, \mathbf{w}=$ $[1,1,1]^{T}$.

2. The Jordan canonical form

Homework 30. Let A and B be two given $n \times n$ matrices. Assume that A and B are simultaneously to triangular matrices (i.e. there exists a single invertible matrix S such that $S^{-1} A S$ and $S^{-1} B S$ are upper triangular). Show that all the eigenvalues of $A B-B A$ must be 0 .
Homework 31. Let $A \in \mathbb{K}^{n \times n}$. Assume that there exists a $k \geq 1$ such that $A^{k}=0$. Show that all the eigenvalues must be 0 .

Homework 32. Let $A \in \mathbb{K}^{m \times n}$ be the block matrix defined as

$$
A=\left[\begin{array}{cc}
A_{1,1} & A_{1,2} \\
0 & A_{2,2}
\end{array}\right]
$$

where $A_{1,1} \in \mathbb{K}^{n \times n}$ and $A_{2,2} \in \mathbb{K}^{m \times m}$. Show that there A is nilpotent if and only if $A_{1,1}$ and $A_{2,2}$ are nilpotent.

Hint: you may want to prove that the eigenvalues of a nilpotent matrix must be 0 . It follows from this that (up to a change of basis), $A e_{k} \in \operatorname{span}\left(e_{1}, \cdots, e_{k-1}\right)$. Conclude from this where $A^{j} e_{k}$ may lie (where e_{k} is the k th basis vector)
Homework 33. Compute the Jordan canonical form and the Jordanizing basis of the matrix

$$
A=\left[\begin{array}{ccc}
3 & 0 & 8 \\
3 & -1 & 6 \\
-2 & 0 & -5
\end{array}\right]
$$

Homework 34. Compute the Jordan canonical form, as well as the generalized eigenvectors (those that lead to the JCF) of the following matrices:

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
11 & 6 & -4 & -4 \\
22 & 15 & -8 & -9 \\
-3 & -2 & 1 & 2
\end{array}\right], \\
& B=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
0-1 & -2 & \\
0 & 0 & -1
\end{array}\right] .
\end{aligned}
$$

What are A and B raised to the power 3 and 4 ?
Homework 35. Let $A \in \mathbb{K}^{n \times n}$ be a matrix such that $|\lambda|<1$ for all eigenvalues $\lambda \in \sigma(A)$. Show that

$$
\lim _{k \rightarrow \infty} A^{k}=0
$$

(this is important in proving convergence of certain stochastic processes, which are used, among others, in mathematical genetics.)
Homework 36. Why you should not use JCF on a computer.
Let B_{ε} be the matrix defined with a parameter $\varepsilon>0$ as

$$
B_{\varepsilon}=\left[\begin{array}{lll}
1 & \varepsilon & 0 \\
0 & 1 & 0 \\
\varepsilon & 0 & 1
\end{array}\right]
$$

Let J_{ε} be its canonical Jordan form and let $J=J_{0}$. Compare $\left\|B_{0}-B_{\varepsilon}\right\|_{F}$ and $\left\|J-J_{\varepsilon}\right\|_{F}$ and conclude that Jordanizing a matrix is an unstable process.
Homework 37. Find the minimal polynomial of the following matrix

$$
A=\left[\begin{array}{ccc}
-14 & 3 & -36 \\
-20 & 5 & -48 \\
5 & -1 & 13
\end{array}\right]
$$

Homework 38. Let $A \in \mathbb{K}^{n}$ such that $p_{A}(x)=m_{A}(x)$ (the characteristic polynomial is also the minimal one). What can be said about the Jordan canonical form of this matrix?
Homework 39. Solve the following initial value problem:

$$
X^{\prime}(t)=\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 1 \\
4 & -4 & 5
\end{array}\right] X, \quad X(0)=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Homework 40. Find real solutions to the following second-order differential equation, using the matrix formulation.

$$
y^{\prime \prime}+y=0, \quad 0 \leq t \leq 2 \pi
$$

Homework 41. Find the general solutions to the following system of differential equations

$$
\left\{\begin{array}{l}
x^{\prime}=-7 x-5 y-3 z \\
y^{\prime}=2 x-2 y-3 z \\
z^{\prime}=y
\end{array}\right.
$$

3. Spectral theorems

Homework 42. Let $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$. Diagonalize (with unitary/orthogonal similarity) A.
Homework 43. Let $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$. Diagonalize (with unitary/orthogonal similarity) A.
Homework 44. Let A, B, C, D be four matrices such that $A D$ and $B C$ are Hermitian.
(1) Show that A and D are not necessarily Hermitian (and so do C and B !).
(2) Show that $A D-C^{*} B^{*}=I \Rightarrow D A-B C=I$.

Homework 45. Let $A=C+i B \in \mathbb{C}^{n \times n}$, with $C, B \in \mathbb{R}^{n \times n}$. Show the following

$$
A \text { is Hermitian } \Leftrightarrow C \text { is symmetric and } B \text { is skew-symmetric. }
$$

Homework 46. Prove the second equality in Courant-Fisher's theorem.
Homework 47. Given two Hermitian matrices A and B. Show that A and B are similar if and only if they are unitarily similar.

Homework 48. Let A and B be two Hermitian matrices and assume that $A-B$ has only nonnegative eigenvalues. Show that

$$
\lambda_{i}(A) \geq \lambda_{i}(B)
$$

Homework 49. This exercise deals with the approximation of Hermitian matrices. This will be important in the next chapter of the course.

Let A be an $n \times n$ Hermitian matrix.
(1) Justify the existence of a decomposition $A=U \Lambda U^{*}$, where Λ is a real diagonal matrix and $U=$ $\left(\mathbf{u}_{1}, \cdots, \mathbf{u}_{n}\right)$. We will assume that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$.
(2) Show that $A=\sum_{i=1}^{n} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T}$.
(3) Let $A_{k}=\sum_{i=1}^{k} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T}$. Show that for any $\mathbf{x} \in \mathbb{K}^{n}$ with $x b f \|_{2}=1$ we have $\left\|\left(A-A_{k}\right) \mathbf{x}\right\|_{2}^{2} \leq \sum_{i=k+1}^{n}\left|\lambda_{i}\right|^{2}$.
(4) Prove that $\left\|A-A_{k}\right\|_{2 \rightarrow 2}:=\max _{\|\mathbf{x}\|_{2}=1}\left\|\left(A-A_{K}\right) \mathbf{x}\right\|_{2} \leq\left(\sum_{i=k+1}^{n}\left|\lambda_{i}\right|^{2}\right)^{1 / 2}$.
(5) Find the rank 2 and 3 approximations based on the spectral decomposition of the following matrix and estimate the errors in the $\|\cdot\|_{2 \rightarrow 2}$ norm.

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 \\
1 & 2 & 3 & 3 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

School of Mathematics and Statistics, Beijing Institute of Technology
E-mail address: jlbouchot@bit.edu.cn

[^0]: Date: December 30, 2018.

