EXERCISE SHEET 2: MATRIX ANALYSIS

JEAN-LUC BOUCHOT

Homework 1. Assume A and B are two non-singular matrices. Prove that

$$
\operatorname{adj}(A B)=\operatorname{adj}(B) \cdot \operatorname{adj}(A)
$$

Homework 2. Let $A \in \mathbb{R}^{n \times n}$, for $n \geq 2$. Prove that

$$
\operatorname{adj}(\operatorname{adj}(A))=(\operatorname{det}(A))^{n-2} A
$$

Homework 3. Let S be a subset of a vector space V.
(1) What can be said about $\operatorname{dim}(\operatorname{span}(S))$?
(2) Let $V=C^{\infty}(\mathbb{R}, \mathbb{R})$ the set of infinitely differentiable functions. Is V finite or infinite dimensional?

Homework 4. Consider the following three basis of $V=\mathbb{R}_{2}[x]$:

- $S=\left(x \mapsto 1, x \mapsto x, x \mapsto x^{2}\right)$,
- $T=\left(x \mapsto 1, x \mapsto 1+x, x \mapsto 1+x^{2}\right)$,
- $U=\left(x \mapsto x^{2}+1, x \mapsto 1+x, x \mapsto x+x^{2}\right)$,

Consider the following mapping:

$$
M: \begin{array}{ll}
\mathbb{R}_{2}[x] & \rightarrow \mathbb{R}_{2}[x] \\
p & \mapsto p^{\prime}+X p^{\prime}
\end{array}
$$

(1) Show that M is a linear transformation.
(2) Compute its matrix representations when looking at is using all the different basis (i.e. U for both input and output spaces, T for both input and output spaces, and then U).
(3) Show that all these matrices are similar to each other. What is the P matrix appearing in the equivalence
(4) Compute now the matrix of this linear transformation when the input and output basis are not the same. (i.e. 6 matrices in total). Show that for all of these matrices, there exists a pair of non-singular matrices P and Q such that $A=Q B P^{-1}$ (where A is one of those matrices and B is another one). What do P and Q correspond to?
Homework 5. Let $A=\left(\begin{array}{ccc}0 & a & b \\ a & 0 & c \\ b & c & 0\end{array}\right)$ for some $a, b, c \in \mathbb{R}$. Fow which values of a, b, c is A invertible?
Homework 6 . Let $\left(x_{i}\right)_{i=1}^{n}$ be n numbers in \mathbb{R}. Let A be the matrix such that $a_{i, j}=x_{i}^{j}$. Show that A is invertible $\Leftrightarrow x_{i} \neq x_{j}$ for $i \neq j$.
Homework 7. Let $A \in \mathbb{R}^{n \times n}$. Assume that for all $1 \leq i \leq n, \sum_{i=1}^{n} a_{i, j}=1$. Prove that $\lambda=1$ is an eigenvalue and give one of its eigenvectors.
Homework 8. Let $t \in \mathbb{R}$ and let $A=\left[\begin{array}{ccccc}1 & t & t & \cdots & t \\ t & 1 & t & \cdots & t \\ t & \vdots & \ddots & \cdots & t \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ t & t & t & \cdots & 1\end{array}\right]$. Find the determinant, eigenvalues, eigenvectors of the matrix A and diagonalize it.

Homework 9. Let $A \in \mathbb{K}^{n \times n}$ and assume A is diagonalizable.

[^0](1) Compute, using a power series, $\exp (A)$. Verify, by analyzing the continuity of the partial sums, that this operation is well-defined!
(2) Does it hold that $\exp (A+B)=\exp (A) \exp (B)$. If yes, prove it, if no, give an example and a condition for the formula to be true.
(3) Assume moreover $A^{3}=0$. What is $\exp (A)$?
(4) What is $\exp \left(A^{T}\right)$?
(5) Assume (λ, \mathbf{x}) is an eigenpair of A. What can be said about the eigenvalues and / or eigenvectors of $\exp (A) ?$

School of Mathematics and Statistics, Beijing Institute of Technology
E-mail address: jlbouchot@bit.edu.cn

[^0]: Date: November 28, 2018.

