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Scaled-distance-transforms and monotonicity of
autocorrelations

Jean-Luc Bouchot and Frédéric Morain-Nicolier

Abstract—In this paper, we investigate the use of distance
transforms in a scale space domain for the image (and signal)
misalignment problem. We show that it is possible to build
an autocorrelation function that is monotonic with respect to
the amount of translation. This creates a new paradigm for
image comparison and gives yet a new generalization of distance
transforms to grey-level images. Its behavior is analyzed on a
natural scene image and its robustness against noise is verified
numerically.

Index Terms—autocorrelation, distance transforms, scale-

space, misalignment, Hausdorff measure

I. INTRODUCTION

COORDING to some research in the neuroscience (see

for instance Cadieu et.al. [1]), the human brain manages
to recognize some objects by a cascade of different detectors
with increasing complexity. It is now clear that the neurons
are activated in presence of certain fixed stimuli. In particular
it seems that edges play an important role in the detection
process. Due, however to the scale invariance nature of the
human visual system, it is beforehand impossible to tell the
scale of an object activating a neuron at a given moment.

On the other side, computer vision scientists have been
working intensively on structural similarity measures. A major
piece of work is dealing with image quality estimation and
yields one of the best measures so far [2]. The authors com-
pared images by separating their resemblances into three com-
ponents. First a luminance normalization, second a contrast
normalization, while the third component seems to have the
most impact and is described as being a structural component
of the image. More recently, some work have been done on
monogenic representations and phase-based imaging for image
comparison [3], [4]. It is clear since the original work of [5]
that structural information is contained in phases.

It is also understood that edges play a great role in machine
recognition. The HOG descriptor [6] gives a description of
local neighborhoods only based on weighted edges. Based on
this, Shrivastava et. al. [7] recently described how considering
the whole environment (i.e. the whole image) for comparison,
even though one uses local descriptors, can drastically improve
some results.

In this paper, we investigate a new way to look at multi-
variate real-valued functions by defining a distance transform
in a scale space. This approach is particularly suited for
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the misalignment problem, e.g. for image registration and
stereo vision. Unlike most of the similarities used in image
comparison and pattern matching [8], our scaled distance
transform yields a monotonic behavior when dealing with
autocorrelations.

A. Monotonicity of autocorrelation and misalignment

In this note, we are particularly interested in similarity
measures designed for the following misalignment problem:

t* = argminteRn J(ftag) (1)

where

e f and g are two multivariate signals: f,g: R — R,

e f: corresponds to the translation of the signal f by a
vector t, and

e J corresponds to an objective function. It can be under-
stood as a distance measure or a similarity measure (in
which case we would want t* to maximize this equation).

When f = g, we are dealing with an autocorrelation
minimization. In order to use local minimization techniques,
it is essential for the objective function f to show some kind
of monotonicity with respect to the amount of misalignment
such as J(fat, f) < J(foat, f) for all 0 < Ay < Ao
However, as described in [8], most of the usual similarity
measures or distance metrics, such as any f-divergences and
Minkowski distances, do not fulfil this property. This has led
researchers to increase the work on local feature selections.
Unfortunately, while SIFT [9] and HOG [6] like features
appear robust for natural images, they behave poorly, for
instance, in interferometric imaging (such as those obtained
by Optical Coherence Tomography). In such cases, purely
structure based measures show stronger potential. To the best
of our knowledge, only measures based on the discrepancy
norm [10] and Hausdorff measures [11].

B. Organization and contribution

In this paper we investigate a new similarity measure in
a scale-space that fulfills the above monotonicity criterion. It
is based on a combination of distance transforms at different
scales. We start in Section II by re-introducing the mandatory
background. In particular basics about distance-transforms and
scale space are given. Then, we introduce our novel approch in
Section III. We derive our scaled-distance-transform (SDT) for
one dimensional signals and analyze its theoretical properties.
Section III-B extends our results to higher dimensional signals.
Finally Sections IV and V give some numerical results and
draw conclusions.
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II. BACKGROUND REVIEW
A. Distance transforms and Hausdorff measures

In his novel work, Baddeley [12] introduced a metric based
on the Hausdorff measure to compare two binary images.
While his idea was first to compare the efficacy of different
edge detection algorithms, it has led to many research in the
area of binary pattern matching. In particular it introduced the
notion of Local Distance Maps that also show a monotonic
behavior with respect to the displacement.

In this section we consider two bounded open sets A and
B in an ambient metric space (R", d).

Definition 1 (Distance transform to the foreground). The
distance transform is defined as

Vx € R", DTylA](x) = d(x,A) = ;rleig(d(x, y). (2
Remark 1: The output of the distance transform might be
infinite for x — +00. We can restrict the domain of definition
of the DT to a bounded domain €) containing A.
Remark 2: This is generally called the distance to the
foreground. A similar definition, with the distance transform
to the background may be defined. We will not give any
further details about this in the rest of this note. The distance
transform to the background is finite as long as A is bounded.
From there, it is easy to define the distance transform of
binary functions (i.e. indicator functions). As long as these
functions have support on a bounded domain we can identify
them with their support and consider the distance transform
of their support. We will equivalently write

DTy[A] = DTa[xa] 3)

where x4 represents the indicator function of the set A.
Comparing indicator functions can also be done with the
Hausdorff metric [11], [13]. It is defined as follows:

Definition 2 (Hausdorff distance). Given two bounded sets
A, B C (R"™,d), the Hausdorff distance is defined as

H(A,B) = maX(igg(d(X» B)),sgg(d(y,A)))

“4)

This Hausdorff distance can however be reformulated in a
simpler manner [12]

H(AvB) = Sup ‘d(xaA) - d(va)|
€N

= sup |DTy[4](@) — DT [B](@)

&)

which is in this case implemented by running two distance
transform algorithm. Some efficient and robust approximations
have been developed that makes this idea tractable [14],
[15], [16]. The importance of this distance is justified by the
following theorem:

Theorem 1. Given a non-empty finite set A C R" and a
vector t € R", it holds [11]:

H(A, T A) = ||t

where the norm depends on the distance used in the definition
above.

As a consequence, we have the monotonicity along a line
of the autocorrelation function:

Corollary 1. Let t € R" be a vector and A C R™ a non-empty
finite set. For any two constants 0 < A1 < Ao, it holds:

H(A, Tyt A) < H(A, T\t A)

B. Scale space

As this area can be very detailed if we want an exhaustive
description, we only review the topics needed for this letter:
the Gaussian scale space. We refere the curious reader to [17]
for more details.

Scale space representations have first been introduced and
studied in details in [18] and then used in different computer
vision algorithms [9], [6]. It allows to give a description
of an image based on its spatial coordinates as well as in
terms of scale. Given the well known Gaussian smoothing

a?4y? . .
kernel g(z,y; s) := ﬁe‘ 2»~ depending on the continuous
scale parameter s € RT, one can define the scale space
representation of an image I as, L(xz,y;0) = I and for s

as above,

L(z,y;8) = (9(-, 5 8) * I) (2, y) (6)

where * denotes the product of convolution. These ideas have
been successfully used in the context of feature detection such
as SIFT [9] or HOG [6].

III. SCALED DISTANCE TRANSFORMS

The whole idea of our new approach is to use the scale-
space representation to embed the structures of images in
a more robust similarity measure that is monotonic with
respect to the amount of translation. We first look at the one-
dimensional case and deal with higher-dimensional signals in
the following section. On the other hand, our approach can be
seen as yet another generalization of the distance transform to
continuous, or, at least, non-binary signals. However, unlike
other generalizations [19], [20], [21], the autocorrelation func-
tion based on the Hausdorff distance in a scale space shows
the monotonic behavior expected. Our generalization differs
also from others by the fact that it extends the idea of edge
comparison, as suggested by the original work.

A. One-dimensional signals

Edges are found as zero-crossing of the Laplacian of the
scale-space representation: a point x is said to be an edge
at a given scale s > 0 if the Gaussian regularized derivative
reaches an extremum at x. In other words, we want both a
non-vanishing first derivative and a zero-crossing of the second
one.

In the one-dimensional case, this translates to:

(0ags * f)(x) # 0,
(Ozags * [)(x) = 0.
We denote by E(f;s) the set of edges found in f at scale
s. It is defined as
E(f;s) = {x € R: (Oxgs * f) (x) # 0}

N{x eR: (Oxxgs * f) (x) =0} (7
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This can equivalently be written as FE(f;s) =
(Oxgs * F)7 (R\{0}) N (Bsexgs * f)7" ({0}), where the

inverse should be understood in an algebraic way as

X € (Oxgs * ) ({0}) & (Oexgs * f) (x) = 0

Definition 3. Let f be a function defined on Q) C R, open
and bounded, with values in R. Its scaled-distance transform
is a positive real-valued mapping from Q x R :

QO xRt — RT
SDTW:{ x,5) = SDT[flxs) &

SDT[f](x,s) = min{d(x,y),y € E(f;s)} ©)

B. Higher dimensional signals

We use a very similar approach to define the scaled-distance
transform in a multivariate setting. However, here we calculate
the distance transform to an edge, which can appear in any
direction. We say that an edge located at x is oriented in the
ith direction, 1 < i < n, if

x € Bi(f;5) 1= {x € R: (Brgs % f) (x) £ 0}
{xeR: (axmigs * f) (x) = 0}.

The set of all edge locations at scale s is defined as

E(f;s) :UEi(fES)'

(10)

11

Hence we get the following definition:

Definition 4. Let f be a function defined on Q) C R"™, open
and bounded, with values in R. Its scaled-distance transform
is a positive real-valued mapping from Q x R :

QxR — RT
SDTf]: { (x,8) — SDTI[f](x,s) 12)
SDT[f](x,s) = min{d(x,y),y € E(f;s)} (13)

C. Comparing SDTs and monotonicity

Given a finite measure v on Rt and a distance d on R”,
we suggest to compare two SDT representations with

5spr(f,9) = /5(SDT[f](-,S),SDT[Q](wS))d'/(S)~

s>0
(14

Proposition 1. Given a function f in (@ C R™d). Its
autocorrelation function Jg[f](t) := dspr(f, ft) the Haus-
dorff distance is used as & is monotonic with the respect
to the displacement. For a given t € R™ and to constants
0 < A1 < \g, it holds

Jufl(Aat) < Jufl(Azt)

Note that this property is stated for functions defined on
Q) which means that the objective function Jy needs not to
be defined for all t’s. Fortunately, a simple completion of the
function with 0’s will solve any problems. The proof relies on
the following lemma.

5)

Fig. 1. Mansion image with the reference patch

Lemma 1. Given a function f, the set of its edges at a given
scale s is anti-invariant with respect to translations:

E(Tif;s) =T +E(f;s)

Proof. To prove the lemma it is sufficient to show that for
any x € E(f;s), T_¢x € E(Tif;s). The other part of the
inequality is obtained with f = T_g.

Equations (10) and (11) state that x € FE(f;s) if there
exists an ¢ € {1,...,n} such that (9,,gs * f) (x) # 0 and
(Oz,2,9s * ) (x) = 0. In particular we have

/ Or;z,9s(x — 7) f(T)dT = 0,

TERn
/ Opiz; 9s(x+t —u) f(u—t)du =
ueRn
/ Ora,9s(T-tx — )Ty f(u)du = 0.
ueRn

A similar result is obtained regarding the first derivative.
Hence T_¢x € E(T%;s) which concludes the proof.
O

Proof. (of the proposition)

With the use of the previous lemma, the proof of Proposi-
tion 1 is rather straightforward. Indeed, for a fixed s € R, for
two positive constants 0 < A; < A and a translation vector
t € R™, we have that H(SDT[f](-;s), SDT[T,+f](;5)) <
H(SDT[f](:;8), SDT [Tt f](+;8)); due to Corrollary 1 and
the definition 4 of the SDT combined with the previous lemma.

Hence, by definition of a positive finite measure, we have
that

/ H(SDT(f](+5), SDT(Taye f](; 8))du(s) <
s>0

/ H(SDT(f)(+5), SDT[Taye f](:+ 5))dw(s),

s>0

which is the claimed result. O
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Fig. 2. Discrepancies of the translated pattern in the noise free case. = and y axis corresponds to the displacement of the window that is compared to the

black box from Fig. 1.

Fig. 3. Discrepancies of the translated pattern in the noisy case. « and y axis corresponds to the displacement of the window that is compared to the black

box from Fig. 1.

IV. NUMERICAL RESULTS
A. Monotonicity

To analyze the monotonicity property of the SDT, we
compare a sliding patch around the black box from the
mansion pattern, Figure 1. This patch corresponds to a 51 x 51
pixel area. We compare its SDT with other patches in its
neighborhoord in the image with translations from —25 pixels
to +25 pixels in all directions. !

For the numerical experiments we need to specify how to
deal with the finite measure specified in the combination of
the Hausdorff distances at every level. We suggest three ideas
but it is evident that prior knowledge on the geometry of the
scene may help the design of better ones. We consider:

e V=Yxs, S CRT; in this case, only a subset of scales is

given importance (we do not use this approach further)

e v = 1; in this case we give the same emphasis on all

scales without further considerations

e v(s) = Cs; here we give more emphasize on objects at

coarser scales. It is motivated by the fact that noise and

unwanted details will most likely appear in fine scales.
Moreover we apply the SDT on discrete images and therefore
use the usual Gaussian pyramid as a scale space. The results of
the local discrepancy can be seen in Figure 2. It is important
to notice that the monotonicity along a line is not valid due to
the fact that we consider “real” patches or a real image and
thus we are not dealing with exact autocorrelation. However,
it is still locally true and the surface shows few local minima.

B. Noise robustness
It is well known that the Hausdorff distance is however
rather unstable when facing noise. This is due to the max in

Note that all the data for this note can be obtained from the authors” web-
sites: http://www.math.drexel.edu/ jb3455/publi.html or http://pixel-shaker.fr/

its definition. To overcome this problem, it has been suggested
to average the contribution of all the pixels via the use of a
p-mean:

Ticsldle ) itz " e
| X|

And as p gets bigger this approximation gets better but more

sensitive to noise. For this series of tests we have considered

the black box reference window as noise free and have added

Gaussian noise to the sliding window. The dissimilarity maps

can be seen in Figure 3, where we have p = 16.

H(AB)%(

V. CONCLUSION

We have introduced an approach that generalizes the clas-
sical distance transform to non-binary signals based on a
scale space representation. Compared to other generalizations,
the autocorrelation function based on our scaled distance
transform shows a monotonic behavior with respect to the
misalignment. This generates new ideas for signal and image
registration.

The idea to use the scale space for edge detection is not new,
it can be understood as the building blocks of wavelet anal-
ysis, for instance. However, the monotonicty property of the
autocorrelation function described above may motivate new
research in image alignments based on wavelet representations
and/or multiresolution analysis.
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