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Abstract—We consider the traditional compressed sensing
problem of recovering a sparse solution from undersampled data.
We are in particular interested in the case where the measure-
ments arise from a partial circulant matrix. This is motivated by
practical physical setups that are usually implemented through
convolutions.

We derive a new optimization problem that stems from the
traditional `1 minimization under constraints, with the added
information that the matrix is taken by selecting rows from
a circulant matrix. With this added knowledge it is possible
to simulate the full matrix and full measurement vector on
which the optimization acts. Moreover, as circulant matrices are
well-studied it is known that using Fourier transform allows
for fast computations. This paper describes the motivations,
formulations, and preliminary results of this novel algorithm,
which shows promising results.

I. INTRODUCTION

The last decade has seen the emergence of compressed
sensing as a technique to recover signals from the knowledge
of very few linear samples. Theoretical works and numerical
algorithms have been developed in parallel in order to provide
solutions to underdetermined linear systems. On the one hand,
many research has been done towards the analysis of recovery
algorithms based on a so called Restricted Isometry Property
(RIP) [1][2, Chap.6]. On the other, a lot of effort has been put
towards finding matrices fulfilling such RIPs [3], [4], [5]. We
concentrate here on the numerical solutions of Ax = y where
A is a partial random circulant matrix.

A. Motivation

The compressed sensing community has concentrated on
solving very general problems. We try here to restrict ourselves
to more applicable solutions. Usual physical sensing devices
such as those used, e.g. in MRI machines, implement a
convolution, which are themselves modeled in terms of linear
measurements by a circulant matrix, or partial Fourier matri-
ces. Though such sensing matrices are important, algorithms
are designed in a very general way, independent from the type
of measurement process. It is however of prime importance for
the applicability of compressed sensing to look at algorithms
that are practical and efficient in applications.

The question can now be reformulated into Given a matrix
A ∈ Rm×N obtained by (randomly) selecting m rows from a
circulant matrix C ∈ RN×N and the knowledge of y = Ax

for y ∈ Rm and a certain unknown x ∈ RN , can we recover,
or at least find a suitable approximation of, x?

B. Contribution and organization

This papers introduces the first, to our knowledge, algorithm
for the sparse recovery problem specifically designed for
underdetermined partial circulant matrices. We give mathe-
matical justifications for its derivation and validate our ideas
empirically by some numerical results.

The remaining parts of the paper are organized as follows.
We first summarize the major (numerical) linear algebra results
that we use. The most important theorem involves the Fourier
transform of a circulant matrix and its eigenvalues. Then,
in Section III we review classical results from compressed
sensing and in particular recovery guarantees for optimization
and greedy methods. Then Section IV introduces our new
recovery algorithm that is specifically designed for (random)
partial circulant matrices. It first considers a noise free case
to develop algorithm 1. We also provide ideas about how to
deal with inaccurate measurements or lack of sparsity in the
input unknown signal. Then Section V extends our findings
to the case of doubly circulant block matrices. First empirical
evidence of the well-foundedness of our algorithm are given
in Section VI and we draw conclusions in Section VII.

II. SPECTRUM AND INVERSION OF CIRCULANT MATRICES

An N × N matrix C = (cij)
N
i,j=1 is circulant if cij =

ci+1,j+1 and the subscripts are taken modulo N i.e.

C =


c0 c1 c2 . . . cN−1

cN−1 c0 c1 . . . cN−2

...
...

...
. . .

...
c1 c2 c3 . . . c0

 (1)

and is denoted by C = circ(c0, c1, . . . , cN−1). C is diag-
onalizable by the Fourier matrix F : C = FΛF ∗, where
Λ =diag(λ1, . . . , λN ) is the diagonal matrix of eigenvalues
of C. Denote ω the N th primitive root of unity, it holds

F (i, j) =
1√
N
ω(i−1)(j−1)

Λ(i,i) = λi =

N−1∑
k=0

ck(ωi−1)k (2)



Once C is invertible,

C−1 = Fdiag(λ−1
1 , . . . , λ−1

N )F ∗ (3)

which implies that C−1 is a circulant matrix too. If C is singu-
lar, replace (λ−1

1 , . . . , λ−1
N ) by (λ+

1 , . . . , λ
+
N ) in equation (3)

to compute the Moore-Penrose pseudoinverse of C, denoted
by C+, where

λ+
i =

{
0 if λi = 0,

λ−1
i if λi 6= 0,

(4)

for i = 1, 2, . . . , N . Notice that C+ = C−1 when C is
invertible. Then the l2-minimization problem

minimize ‖x‖2, subject to Cx = b (5)

always has a solution C+b (see [6], [7]).

III. COMPRESSED SENSING AND SPARSE SIGNAL
RECOVERY

A. Compressed sensing

Compressed sensing (CS) has emerged in the last decade
as a mathematical tool to solve underdetermined systems of
linear equations y = Ax ∈ Rm, for x ∈ RN , with m � N 1.
It relies on the assumption of sparsity of the solution (i.e.
the number of non-zero components remains low), to find an
adequate solution to the following problem:

minimize ‖x‖0, s.t. ‖Ax− y‖2 ≤ η , (6)

where ‖x‖0 = | supp(x)| denotes the number of non-zero
components (the sparsity), η is a constant handling the noise in
the measurements. Eq. (6) defining an NP-hard mathematical
program, it is usually replaced by its tightest convex relaxation,
known as Basis Pursuit DeNoising (BPDN):

minimize ‖x‖1, s.t. ‖Ax− y‖2 ≤ η . (7)

Usual conditions showing the equivalence of the two problems
include [2] the Null Space Property (NSP) of the measurement
matrix A up to a certain order; and the Restricted Isometry
Property (RIP). A is said to satisfy the NSP of order s if, for
any S ⊂ {1, · · · , N}, |S| = s, and any vector x ∈ Ker(A)
supported on S, it holds: ‖xS‖1 < ‖xS‖1. A satisfies an RIP
of order s and constant δ if for any s-sparse vector x, |‖Ax‖22−
‖x‖22| ≤ δ‖x‖22. One can see this as a measure of closeness
with an isometry on the set of s-sparse vectors. In particular,
if δ2s < 1 then Problem (6) has a unique solution and for
δ2s <

√
2− 1 the solution to Eq.. (7) is also the sparsest.

B. Algorithms and recovery guarantees

The different algorithms for sparse recovery can be classi-
fied in three main classes: algorithms based on optimization
techniques such as linear programming and convex program-
ming, greedy algorithms, such as Orthogonal Matching Pur-
suit (OMP) [8], and thresholding algorithms, such as Com-
pressive Sampling Matching Pursuit (CoSaMP) [9], Iterative

1The complex case can also be considered, but we prefer to leave it aside
for further research.

Hard Thresholding (IHT) [10], Hard Thresholding Pursuit
(HTP) [11] and its variants Graded HTP (GHTP) [12], and
generalized HTP (fHTP) [13]. These various algorithms have
different characteristics, in particular regarding the number of
non-zero entries in the sequences of estimates they yield; while
HTP, CoSaMP, and IHT yield sequences of vectors of fixed
sparsity, OMP, GHTP, and fHTP let the support grow with
each iterations.

RIP-based recovery guarantees are usually expressed as
sufficient conditions δf(s) < δ, with f(s) an integer valued
function of the sparsity level s, and for an algorithm-dependent
constant δ. Examples of such recovery conditions are given
in Table I. The challenges reside both in finding appropriate

TABLE I
USUAL SUFFICIENT CONDITIONS FOR EXACT SPARSE RECOVERY FROM

FEW MEASUREMENTS.

Alg `1 OMP HTP GHTP IHT CoSaMP
f(s) 2s 13s 3s 9s 3s 4s

δ
√
2− 12 1/6 1/

√
3 1/3 0.5

√√
11/3−1

2

matrices fulfilling such RIPs (note that it has been proven
mainly for random matrices and partial circulant matrices) and
also in increasing the range of convergence of such algorithms
(i.e. increase the value δ, and reduce f(s)).

IV. PCMS: AN ALGORITHM TO RECOVER SPARSE SIGNALS
FROM UNDERSAMPLED CIRCULANT MEASUREMENTS.

A partial circulant matrix Φ is a row submatrix of C with an
arbitrary index set Ω = {i1, · · · , im} ⊂ {1, 2, . . . , n} whose
cardinality |Ω| = m by removing all rows whose index is not
in Ω from C (see [5], [15]). It will be assumed that the indices
are ordered and unique: i1 < i2 < · · · < im.

We describe here an algorithm designed for the particular
structure of the matrix. It is divided into two main parts: a first
optional part consist in recovering the set of indices of selected
rows. This is not detailed in this note but very easy to derive
and implement thank to the circulant structure of the matrix.
The main part is a linear optimization problem in smaller
dimensions (described in the following Subsection), instead
of solving program (7). The two last sections are dedicated
to the global description of the algorithm 1 as well as some
inputs for how to deal with noisy observations.

A. Solving a smaller problem

Assuming that Ω can be easily recovered (more details will
be given in the following section) we are left with Φ =Ω C.
Note that we will use the notation Ω1

CΩ2
to denote the matrix

extracted from C by keeping the rows indexed by Ω1 and the
columns indexed by Ω2. Hence we are actually minimizing
‖C−1b‖1 with b = bΩ + bΩ where bΩ is the vector in RN

such that for any 1 ≤ j ≤ m, (bΩ)ij = yj and 0 elsewhere.

2This original bound has been later improved [14].



With D := C−1 denoting the inverse of the circulant matrix
C it holds

x = Db = D(bΩ + bΩ) = DΩy +DΩz , (8)

for an unknown z ∈ RN−m. Hence the minimization problem
Eq. (7) can be rewritten as

minimizez∈RN−m ‖DΩz +DΩy‖1. (9)

This problem is actually equivalent to the usual Basis Pursuit
(i.e. Program (7) in the noiseless case: η = 0).

Remark 1. It is now the right moment to clarify a few
things. This method is clearly only applicable when the partial
measurement matrix can be fully recreated. In this sense,
this approach only applies to partial circulant matrices at the
moment. Also it can only be applied to rather well posed
circulant matrices. This is however not a main problem as the
condition numbers of the random circulant matrices used here
are rather well behaved [?], [16], [17]. It is worth mentioning
that the idea introduced here could also be extended, in a
certain way, to sub-matrices arising from invertible matrices.

Remark 2. Another point to notice is that, instead of mini-
mizing over an N dimensional subspace, we are minimizing
only on an N −m dimensional subspace, hence the smaller
computational costs. This is particularly important when deal-
ing with larger sparsities. Indeed, stable recovery of most of
the algorithms are ensured for a number of measurements
m that scales with s log(N/s). As a consequence, the larger
the sparsity, the more measurements we have and hence the
smaller the search space.

Our approach shows advantages both in terms of compu-
tations and in terms of memory requirements. As the matrix
C and its inverse are both circulant, only one vector of size
N is needed. Moreover, the matrices being diagonalizable in
a Fourier basis, all matrix-vector products can be carried via
fast Fourier transforms.

B. Algorithmic concerns

The algorithm can be described only in a few steps:

Require: Φ ∈ Rm×N , y ∈ Rm,
return x# ∈ RN : the estimated solution to (9).
Find Ω (if not given)
Calculate the eigenvalues of the inverse of the full
circulant matrix using Eq. (2) and Eq. (4).
Store the inverse eigenvalues.
Calculate DΩy.
Define DΩ.
Solve the convex problem (9).

Algorithm 1: Sparse signal recovery from partial circulant
matrices

In particular, it is important to notice that, if the memory
is a concern, then only saving the vector c (the first row of
the partial circulant matrix Φ), the eigenvalues, and the vector
DΩy is sufficient for the whole process. Moreover, all the

matrices used here being (partial) circulant, the use of Fast
Fourier Transform would drastically increase the speed.

C. Dealing with noisy observations

In a more realistic scenario the measurements will be
corrupted by some additive noise as y = Φx + e, where we
assume some bound ‖e‖2 ≤ ε. The error might also stem
from some lack of sparsity of the original vector x. It is often
the case that the signal is only approximately sparse. In this
scenario, the vector x can be decomposed on two sets S,
containing the s largest entries in magnitude, and S, where
the entries on S are assumed to be negligible compared to the
ones on S. Note that we can merge the two kind of noise into
a single measurement noise vector e′ = e+ ΦxS .

If we now reconsider the optimization problem described in
Eq. (9), we see that the underlying assumption is the equality
constraint Φx = y. We need to find constraints on the noise
similar to the ones in Eq. (7) in order to tolerate for uncertainty
in the measurements. Considering the inequality ‖Φx−y‖2 ≤
η, together with Eq. (8), we get

‖Φ (DΩy +DΩz)− y‖2
= ‖ (ΦDΩ − I) y + ΦDΩz‖2 ≤ η (10)

The first part of this term is expected to be close to 0 as Φ
and DΩ are inverses of each other and the matrices are well
posed. This approach, however, slightly modifies the objective
function, but it must be noticed that ‖DΩz + DΩy − x‖1 =
‖DΩz + DΩe‖1 ≤ ‖DΩz‖1 + ‖DΩe‖1. This suggests that
for small noise, minimizing ‖DΩz + DΩy‖1 remains a good
strategy. It is still to be investigated thoroughly.

V. EXTENSIONS

In this section, we extend our idea to solve the l1-
minimization problem (7) with a partial block circulant ma-
trix. Let N = sn. An N × N block circulant matrix
G is defined as circ(G0, G1, . . . , Gs−1) where each block
Gj = circ(gj0, . . . , gj,n−1) is a circulant matrix. Denote
(λj1, λ

j
2, . . . , λ

j
n) the eigenvalues of Gj for j = 0, 1, . . . , s−1.

Denote F the n× n Fourier matrix and let

Q = diag(F, F, . . . , F ),

a N × N block Fourier matrix. Then Q∗GQ =
circ(D1, D2, . . . , Ds−1) where Dj = diag(λj1, λ

j
2, . . . , λ

j
n) for

j = 0, 1, . . . , s− 1. Then there exists an N ×N permutation
matrix P, such that

PTQ∗GQP = P circ(D1, D2, . . . , Ds−1)PT

= diag(H1, H2, . . . ,Hn)

where
Hi = circ(λ0

i , λ
1
i , . . . , λ

s−1
i )

for i = 1, 2, . . . , n. The inverse of Hi can be computed by (3)
if Gi’s are invertible. This yields

G−1 = QPdiag(H−1
1 , H−1

2 , . . . ,H−1
n )PTQ∗. (11)



If the Gi’s are singular, the inverse are replaced by the pseudo-
inverse. With L = QPdiag(H+

1 , H
+
2 , . . . ,H

+
n )PTQ∗, the l2-

minimization problem

minimize ‖x‖2, subject to Gx = b (12)

always has a solution Lb.
We define a partial block circulant matrix Ψ of G with

an arbitrary set Ω = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , N} whose
cardinality |Ω| = m by removing all rows whose indices are
not in Ω from G. The l1-minimization problem

minimizex∈RN ‖x‖1 subject to Ψx = b, (13)

can be reduced to a smaller l1-minimization problem

minimizez∈RN−m ‖LΩz + LΩy‖1 (14)

via the inverse of full block circulant matrix G containing Ψ.
The algorithm can be described as the following:

Require: Φ ∈ Rm×N , y ∈ Rm, n
return x# ∈ RN : the estimated solution to (13).
Find Ω, the set of indices used for the row subselection.
Calculate the eigenvalues of the inverse of each circulant
block using Eq. (2) and Eq. (4).
Store all the inverse eigenvalues.
Generate the permutation matrix P.
Calculate LΩy.
Define LΩ.
Solve the convex problem (14).

Algorithm 2: Sparse signal recovery from partial block
circulant matrices

VI. NUMERICAL VALIDATION

We describe now some first experiments validating the well-
foundedness of the approach. As suggested in [5], we have
used circulant matrices constructed from Gaussian sequences,
as they fulfil a certain RIP. The support of the vectors to
recover were generated at random with a fix number of non-
zeros components s. The magnitude of the entries on the
support were generated at random either from a Rademacher
distribution or from a Gaussian distribution. The set Ω is
generated by picking uniformly at random m elements in
{1, · · · , N}. For the optimization problems, we have chosen
to use CVX, a package for specifying and solving convex
programs [18], [19], but other packages such as `1-magic [20]
may be of interests. All the numerical experiments are avail-
able for reproducible research from the author’s webpage 3.
Note that smarter optimizations are possible for the original
`1 problem, such as FISTA [21], but haven’t been adapted
to the particular approach introduced here. It is expected that
similar optimization procedure would drasatically speed up the
calculations in our novel algorithm.

We illustrate our results against some of the algorithms
described in Section III, namely HTP and OMP. It is important

3See http://www.mathc.rwth-aachen.de/en/˜bouchot/home

to verify that our algorithm performs similarly to the usual
`1 minimization (7) (Basis Pursuit). First, Fig. 1 shows the
percentage of recovery over the random generation of 25
different matrices and vectors. Accurate recovery is understood
in the relative error:

‖x− x#‖2
‖x‖2

≤ θ,

with θ set to 10−5. Here we have N = 400 and the sparsity is
fixed to 120. As hoped, the algorithm introduced in this note
performs as good as the original `1 optimization, implemented
in a similar fashion (again, better optimization toolboxes might
disprove our claim).

In terms of computing time, we compare with the usual `1
basis pursuit optimization. We are aware that faster solvers are
available, but comparison with them would not be fair until a
better optimization is derived for the case of partial circulant
matrices.

TABLE II
AVERAGE TIME, IN SECONDS, FOR EXACT RECOVERY. N = 400, s = 120,

m = 300.

Sensing matrix Gaussian Rademacher
Vector Gaussian Uniform Gaussian Uniform
PCM 1.5783 1.8746 1.6308 1.8646
`1 4.2440 4.6092 3.9561 4.5883

Table II compares the computing time for the original basis
pursuit and our novel approach for four use cases: Gaussian
and Rademacher circulant sensing matrices, together with
Gaussian and uniform unknown vectors. Only the times for
perfect recovery were used for the average. As can be seen, in
all of the situations, the PCM method performs much faster.
Further numerical results, not reported here, suggest that the
speed improvement is greater as the system gets bigger.

Finally, a last set of experiments, illustrated in Fig. 2,
shows the recovery capabilities of our algorithm in presence of
additive noise. For these experiments, the recovery threshold θ
is set to 10−2 and the noise stems from a Gaussian distribution
with variance 10−5. As can be seen, the performance of the
algorithm does not degrade when facing little noise. Further
analysis needs to be done to investigate the impact of stronger
noise.

VII. CONCLUSION

This note introduced the first bricks for an algorithm specif-
ically designed for the recovery of sparse signals from few
measurement when these measurement stem from a circulant
matrix. We derived a mathematical formulation based on a
`1 minimization problem which makes use of the particular
structure of the matrix.

The approach is easy to implement, fast, and memory
efficient. By its derivation based on the diagonalization of the
sensing matrix via Fourier basis, we are able to reconstruct
the full set of measurements virtually and simulate a classic
matrix inversion problem. Though this inversion still need



(a) Gaussian partial cirulant matrix, Gaussian signal (b) Gaussian partial cirulant matrix, Rademacher signal

Fig. 1. Percentage of recovery in various scenarios for different recovery algorithms (noiseless).

(a) Gaussian partial cirulant matrix, Gaussian signal (b) Gaussian partial cirulant matrix, Rademacher signal

Fig. 2. Percentage of recovery in various scenarios for different recovery algorithms (with additive noise).

better processing, first experiments suggest that this method
is reliable.

The first ideas introduced here still require a thorough
analysis of the method, in order to theoretically justify its
speed and efficacy. The encouraging numerical results motivate
for further research and understanding.
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