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Abstract. In this paper we extend results taken from compressed sensing to recover Hilbert-space

valued vectors. This is an important problem in parametric function approximation in particular when

the number of parameters is high. By expanding our target functions in a polynomial chaos and
assuming some compressibility of such an expansion, we can exploit structured sparsity (typically a

group sparsity structure) to recover the sequence of coefficients with high accuracy.

While traditional compressed sensing would typically expect a number of snapshots scaling exponen-
tially with the number of parameters, we can beat this dependence by adding weights. This anisotropic

handling of the parameter space permits to compute approximations with a number of samples scaling

only linearly (up to log-factors) with the intrinsic complexity of the polynomial expansion.
Our results are applied to problems in high-dimensional parametric elliptic PDEs. We show that

under some weighted uniform ellipticity assumptions of a parametric operator, we are capable of numer-

ically approximating the full solution (in contrast to the usual quantity of interest) to within a specified
accuracy.

1. Introduction

The problem of approximating parametric functions is analyzed through the lens of compressed sensing
and model based sparse recovery [2]. Parametric function approximation may be seen from various
perspectives such as vector valued-function approximation or parametrized function .The mathematical
formulation reads as follows: given a (time-)space domain Ω ⊂ Rn and a parameter space U , find an
approximation ũ for u : Ω×U → R uniformly for all parameter y ∈ U . A case that may be of interest is
the case of time-dependent dynamical systems, where the time coordinate can be seen as a parameter.
Even though what is presented here should have its own interest, this research is motivated by problems
arising in parametric PDEs; an application we detail in great depth in Section 5. We recommend
reading [12, 14] for some background on the challenges of high-dimensional parametric PDEs. The goal
of this research is to recover the unknown mapping u from the knowledge of its values u(y(i)) at certain
(as few as possible) sampling points y(i). By considering a polynomial expansion of the solution in the
parameter space, we can model this problem as a linear inverse problem Recover u such that Au = b where
A = (Tν(y(i)))ν∈Λ;1≤i≤m for a certain orthonormal system Tν and where b is a (vector valued-)vector
containing approximations of the solutions.

Obviously without further information, the problem of recovering a vector-valued function in con-
tinuous space is not possible. To facilitate, we develop a framework based on compressed sensing and
(structured) sparse approximation to solve it. We see that this approach allows, under some rather
general assumptions, to recover parametric functions, even in high parameter spaces, thereby breaking
the curse of dimensionality.

To be more precise, we combine ingredients from compressed sensing with the added flavor of struc-
tured sparsity. This structure will later take two precise forms: 1) a group sparsity model, in which
one specifies globally that the spatial coordinates are activated for the same pattern of multi-indices
of parameters and 2) a weighted sparse model, in which we add some anisotropy to the parameters.
Basically, by favoring parameters which we know are of importance (via the weights), we then apply
some structured recovery (in form of groups) such that we can recover the vector valued function.

Ideas of weighted compressed sensing have already been developed for the recovery of scalar-valued
functions, see [30]. In the case of interpolation problems, it allows for a mix between an efficient sparse
representation and the recovery of a smooth function. Among other things, this shows a certain robust-
ness to strong oscillations at the boundaries for interpolation.
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The block structure, on the other hand, has been encountered under the umbrella of model-based
compressed sensing and has been known to be important for instance in the context of multi-band signal
recovery. In such applications, one wants to recover functions which are sparse in a Fourier spectrum,
albeit with its active frequencies grouped together in small sub-bands. A great advantage of group-sparse
and block-sparse recovery methods is that it allows for sampling rates which are far below the traditional
Nyquist sampling rate. However, no attempt to use structured compressed sensing with prior support
information has been made so far.

The goal of this note is two-fold: first we try to bridge the gap between structured sparsity and
sparse recovery with (partial, prior) support information. Second we apply our methods to uncertainty
quantification (UQ) in high-dimensional parametric (elliptic) PDEs. The latter has been a growing area of
research in the last decade where methods based on adaptive stochastic Galerkin methods, as developed in
[18, 17, 23], reduced basis approaches (see, eg., [3, 11]), adaptive Smolyak discretizations [31, 32], adaptive
interpolation methods [13] as well as sampling methods [34] have been analyzed. UQ generally deals with
computing moments of a quantity of interest (QoI) of a certain physical phenomenon. QoI are often real-
valued mapping computed from solutions of a certain PDE. One may consider for instance an average
value of heat in a material. This is a challenging problem due to the (potential) high-dimensionality of the
parameter space and requires numerical integration in very high-dimensions; considering the point wise
approximation simply adds to the computational complexity of the problem. In this paper, we see that
it is indeed possible to use our approximation techniques to compute pointwise estimations of solutions
to families of operators indexed by countably many parameters. Under rather general assumptions
(a generalization of a uniform ellipticity assumption), we can compute an approximation of solution
uniformly for all parameters, by simply using joint sparsity of a generalized polynomial chaos expansion.
Finally, computing moments of any QoI can be done a posteriori without the need of numerically solving
costly PDEs.

A great advantage of the approach presented – shall it be in the context of parametric PDEs or more
generally for vector valued function approximation – is that it can easily be computed in parallel. Up to a
single, relatively computationally cheap, step, all computations are independent from one another. This
is particularly interesting for problems in which the dimensionality of the spatial coordinate is higher
than one.

As suggested above, the paper combines group sparsity with prior support information in the form of
weights. Signal recovery with partial support information has already been studied in the past, among
others using certain hard-coded weights [24, 26, 22] and in form of a Bayesian problem [36]. Our work
heavily relies on the work of Rauhut and Ward [30] in which weighted sparse approximation of real-valued
functions is analyzed. In Section 2 we introduce our general signal model and review some necessary
basics about compressed sensing. The section ends with some examples in which such a structure may
be useful. Section 3 derives results for which recovery is possible, under certain conditions on the sensing
matrix A. Section 4 shows the existence of matrices which fulfill the conditions introduced in the previous
section. We concentrate mainly on two types: 1) matrices in which all the entries are generated from
independent (not necessarily identical) sub-Gaussian random variables, and 2) matrices obtained by
tensor products of the identity and matrices obtained by sampling orthonormal systems. Our results
for the former case generalize known results for the Gaussian, unweighted case and allows to add prior
information to the non-linear recovery procedure. The analysis of the latter shows no strong advantages
over known literature, but are important in order to derive the recovery of the full solution to a high-
dimensional parametric PDEs, which we derive in Section 5. This whole last section is dedicated to
analyzing this problem and should be of independent interest in computational sciences. Our results,
whose pinnacle is stated as Theorem 5.1, can be summarized as follows:

Theorem 1.1. Assume A(y) is an affine family of operators parametrized by y. Assume moreover that
there exists a p ∈ (0, 1) and a sequence of weights v = (vj)j∈N such that A is compressible and summable
(these two notions will be made precise in due time) in an `pv space. Then there exists a sequence of

weights ω(v) such that the solution to an `1ω minimization problem yields a solution f̃ satisfying the
following approximation bounds

‖u(y)− ũ(y)‖ ≤ Cs1−1/p‖u‖`pω +Dε, uniformly for all y.

The meaning of the various norms will be clarified in the later sections. This theorem basically ensures
us the existence of a tractable solution such that all parametric (in y) solutions can be computed for all
spatial coordinates (i.e. for all x ∈ Ω) with uniform (with respect to y) error bounds.



WEIGHTED BLOCK COMPRESSED SENSING FOR PARAMETRIZED FUNCTION APPROXIMATION 3

2. Structured sparsity and weighted sensing

This section aims at introducing/recalling tools from compressed sensing and derive their use in the
particular signal model of weighted group sparse signals.

2.1. Signal model.

Definition 1. A vector x ∈ RN is said to have a B block structure if it is interpreted as a concatenation
of B vectors x = (x[b])b∈B, where x[b] ∈ Rdb with d1 + d2 + · · ·+ dB = N .

As it is common, we can define block-based norms, for some p, q > 0,

‖x‖(B)
q,p :=

(∑
b∈B

‖x[b]‖pq

)1/p

.

The superscript B is emphasized here to remember that the norm of a block signal (obviously) depends
on the partition chosen. To avoid overly complicated notations, we drop this from now on, but the reader
should keep this reliance in mind. In particular, as p↘ 0 we obtain the block sparsity of a signal x

‖x‖q,0 = |{b ∈ B : ‖x[b]‖q 6= 0}| .
This definition, while still dependent on the block structure B chosen, is independent of the inner q-norm.

Note that one could choose to extend this definition and what follows to the case of infinite (but
countable) dimensional vectors by simply indexing over a countable set Λ instead of B. This is an
interesting topic indeed from a theoretical perspective but cannot be directly implemented on a computer.
We leave it to the interested reader to convince themselves that all results written in this paper extend
easily and show in Section 5 how one may truncate the infinite expansion, while keeping the accuracy in
the recovery procedures in the context of numerical approximation of solutions of parametric PDEs.

As it was done for traditional compressed sensing, one can also develop a theory of weighted compressed
sensing when dealing with the block sparse signal model. To this end and throughout this note, given
a block structure B containing B blocks, we consider a sequence of weights ω := (ω1, · · · , ωB)1 of real
numbers ωi ≥ 1. The p-block-norms can be redefined in a weighted fashion

‖x‖(ω)
q,p :=

(∑
b∈B

ω2−p
b ‖x[b]‖pq

)1/p

.

Note here that we simplify the exposition by writing ωb for a b either representing the index in the
sequence of blocks, or the block directly. And similarly, the weighted block sparsity is defined as

‖x‖(ω)
q,0 =

∑
b∈B:x[b]6=0

ω2
b .

This weighted block sparsity being independent of the inner norm chosen, we will simply write ‖x‖(ω)
0

or ω(x). Before we dig deeper in the results, we have to introduce another notion, that of block-support.
It is defined as

B-supp(x) := {b ∈ B : x[b] 6= 0}. (2.1)

Given a block-support set S ⊂ {1, · · · , B}, its weighted cardinality is defined as

ω(S) :=
∑
i∈S

ω2
i .

The notation x[S] will denote either the (block) vector equal to x on each block with indices in S and
0 elsewhere, or the extraction of the blocks indexed by S. The intentions are clear in the context.
Throughout, we want to approximate signals in

S(ω)
q,p := {x ∈ RN : ‖x‖(ω)

q,p <∞}. (2.2)

As is usual in non-linear approximation, we assess the quality of our estimations via Lebesgue-type
inequalities and hence extend the definition of best-s-term `pω approximation to the weighted block case:

σs(x)(ω)
q,p = inf

z:ω(z)≤s
‖x− z‖(ω)

q,p .

Finding the best weighted approximation is an NP-hard problem. An easier approximation to find is
the so-called quasi-best weighted s term approximation defined as follows. Let x̃ be the non-decreasing
weighted block rearrangements of x. I.e., there exists a permutation π in {1, · · · , B} such that x̃[i] =

1Again, one could write ω = (ωj)j∈Λ and extend everything to a countable family of blocks.
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x[π(i)] with ‖x[π(i)]‖pω(π(i))−p ≥ ‖x[π(j)]‖pω(π(j))−p for all j ≤ i. For a (weighted) sparsity value

of s ≥ ‖ω‖2∞, define ks := max{k :
∑k
i=1 ω

2
π(i) ≤ s} and then S := {π(1), · · · , π(ks)}. The quasi-best

weighted s block approximation is then defined as x̃[S]. It follows that the best quasi-approximation
fulfills

σ̃s(x)(ω)
q,p := ‖x− x̃[S]‖(ω)

q,p ≥ σs(x)(ω)
q,p .

We also have the following inequality:

σ̃3s(x)(ω)
q,p ≤ σ(x)(ω)

q,p . (2.3)

Verifying inequality (2.3) is done in a similar way as in [30] with the appropriate changes. We postpone
the details to Appendix A for the curious readers, as they merely are adaptions of known proofs.

Stechkin’s approximation bound can also be extended to the weighted block case.

Proposition 2.1. Let x be a B-block signal and let ω = (ω1, · · · , ωB) be a sequence of weights with
ωi ≥ 1. Let s > ‖ω‖2∞ denote a weighted sparsity. Then for q < p ≤ 2 and r denoting any norm on the
blocks, the following Stechkin’s bound holds

σs(x)(ω)
r,p ≤ σ̃s(x)(ω)

r,p ≤ (s− ‖ω‖2∞)
1
p−

1
q ‖x‖(ω)

r,q . (2.4)

Once again, the proof is postponed to Appendix A.

2.2. Some particular examples of block structures. The abstract structure described above gives
rise to some particular examples.

(1) Traditional weighted compressed sensing: assuming all the sub-vectors to be composed of a
single value gives back the weighted compressed sensing setting. Moreover, setting all weights to
1 yields the original compressed sensing set-up.

(2) Similarly, keeping the block-structure and uniformly setting all weights equal to a given constant
yields the by-now classical theory of structured sparsity in a union of subspaces.

(3) Joint sparsity, in which a set of unknown vectors of same size share a common sparsity pattern
can also be modeled. Consider the matrix X = [x[b]T ]b∈B created by stacking row-wise all the
elements x[b]. Then assuming a block sparse structure over x implies that the columns of X
share the same sparsity pattern. This is further developed in Section 5 where we analyze the use
of this weighted block sparse recovery for high-dimensional parametric PDEs.

3. Recovery guarantees

This section aims at extending and merging known results from block sparsity on the one hand and
weighted sparsity on the other, to the framework of weighted block sparse signals.

Definition 2. Let B be a block structure for RN with the associated weight sequence ω = (ωb)b∈B. A
matrix A ∈ Rm×N is said to fulfill the weighted block `p robust null space property (`pω−BRNSP) with
respect to B of order s ≥ ‖ω‖∞ and constants ρ ∈ (0, 1) and τ > 0 if

‖x[S]‖(ω)
2,p ≤

ρ

s1−1/p
‖x[Sc]‖(ω)

2,1 + τ‖Ax‖2

holds for all x ∈ RN and all block support set S such that ω(S) ≤ s.

Not surprisingly, the following result shows that the `1ω-BRNSP is necessary and sufficient for a robust
recovery via weighted block `1ω−minimization.

Proposition 3.1. Let B ∈ N be a number of blocks of RN . Suppose that A fulfills the `1ω-BRNSP of
order s with constant τ > 0 and ρ ∈ (0, 1). Then, for any z,x ∈ RN , we have

‖z− x‖(ω)
2,1 ≤

1 + ρ

1− ρ

(
‖z‖(ω)

2,1 − ‖x‖
(ω)
2,1 + 2σs(x)

(ω)
2,1

)
+

2τ

1− ρ
‖A(x− z)‖2.

Proof. Let S be the block-support of the best weighted s block approximation, i.e. S is such that

σs(x)
(ω)
2,1 = ‖x− x[S]‖(ω)

2,1 = ‖x[Sc]‖(ω)
2,1 .

‖x‖(ω)
2,1 + ‖(x− z) [Sc]‖(ω)

2,1 ≤ 2‖x[Sc]‖(ω)
2,1 + ‖x[S]‖(ω)

2,1 + ‖z[Sc]‖(ω)
2,1 ≤ 2σs(x)

(ω)
2,1 + ‖ (x− z) [S]‖(ω)

2,1 + ‖z‖(ω)
2,1 .

With v := x− z it follows directly that

‖v[Sc]‖(ω)
2,1 ≤ ‖v[S]‖(ω)

2,1 + ‖z‖(ω)
2,1 − ‖x‖

(ω)
2,1 + 2σs(x)

(ω)
2,1 . (3.1)

Using Def. 2 of the `pω−BRNSP for p = 1, it follows

‖v[S]‖(ω)
2,1 ≤ ρ‖v[Sc]‖(ω)

2,1 + τ‖Av‖2
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Plugging back in (3.1) yields

‖v[Sc]‖(ω)
2,1 ≤ ρ‖v[Sc]‖(ω)

2,1 + τ‖Av‖2 + ‖z‖(ω)
2,1 − ‖x‖

(ω)
2,1 + 2σs(x)

(ω)
2,1 ,

or equivalently, for ρ < 1

‖v[Sc]‖(ω)
2,1 ≤

1

1− ρ

(
‖z‖(ω)

2,1 − ‖x‖
(ω)
2,1 + τ‖Av‖2 + 2σs(x)

(ω)
2,1

)
(3.2)

Putting all the pieces together

‖x− z‖(ω)
2,1 = ‖v‖(ω)

2,1 = ‖v[S]‖(ω)
2,1 + ‖v[Sc]‖(ω)

2,1

Def. 2
≤ (1 + ρ) ‖v[Sc]‖(ω)

2,1 + τ‖Av‖2
Eq.(3.2)

≤ 1 + ρ

1− ρ

(
‖z‖(ω)

2,1 − ‖x‖
(ω)
2,1 + 2σs(x)(ω)

q,p

)
+

2τ

1− ρ
‖A(z− x)‖2.

�

Corollary 3.1. Let B ∈ N and B = (B1, · · · ,BB) be a partition of {1, · · · , N} with the associated weight
sequence ω = (ω1, · · · , ωB). Given 1 ≤ p ≤ q ≤ 2 suppose that A ∈ Rm×N satisfies the `qω-BRNSP of
order s ≥ ‖ω‖2∞ with constants 0 < ρ < 1 and τ > 0. Then for any x, z ∈ RN we have

‖z− x‖(ω)
2,p ≤

Cρ
s1−1/p

(
‖z‖(ω)

2,1 − ‖x‖
(ω)
2,1 + 2σs(x)

(ω)
2,1

)
+

Dρ,τ

s1/q−1/p
‖A(z− x)‖2, (3.3)

with Cρ = (1+ρ)2

1−ρ and Dρ,τ = 3+ρ
1−ρτ .

Proof. The proof follows the one of [21, Theorem 4.25] with the appropriate changes to accommodate for

the weighted block structure. Notice that for any 2q ≥ q′ ≥ q, using Hölder’s inequality, the `q
′

ω -BRNSP
follows from the `qω-BRNSP, namely

‖v[S]‖(ω)
2,q′ ≤

ρ

s1−1/q′
‖v[Sc]‖(ω)

2,1 + τs1/q′−1/q‖Av‖2 (3.4)

for all v ∈ RN and S such that ω(S) ≤ s. Applying Proposition 3.1 with Equation (3.4) for q′ = 1 and
upon choosing S as the block support of the best weighted s block approximation of x yields

‖z− x‖(ω)
2,1 ≤

1 + ρ

1− ρ

(
‖z‖(ω)

2,1 − ‖x‖
(ω)
2,1 + 2σs(x)

(ω)
2,1

)
+

2τ

1− ρ
s1−1/q‖A(z− x)‖2. (3.5)

Now, let T be the block support of the best weighted s block approximation of z − x and apply Equa-
tion (3.4) for q′ = q together with

‖z− x‖(ω)
2,p ≤ ‖(z− x)[T c]‖(ω)

2,p + ‖(z− x)[T ]‖(ω)
2,p ≤

1

s1−1/p
‖z− x‖(ω)

2,1 + ‖(z− x)[T ]‖(ω)
2,p .

to obtain

‖z− x‖(ω)
2,p ≤

1 + ρ

s1−1/p
‖z− x‖(ω)

2,1 +
τ

s1/q−1/p
‖A(z− x)‖2.

Finally, the claim follows by plugging in Equation (3.5). �

Corollary 3.2. For m,N ∈ N and letting B ∈ N denote the number of blocks in the partition B
of {1, · · · , N}. In addition, assume given ω = (ωb)b∈B a sequence of weights with ωi ≥ 1. Assume
A ∈ Rm×N satisfies the `2ω-BRNSP of order s ≥ ‖ω‖2∞ with constant 0 < ρ < 1 and τ > 0. For any
x ∈ RN and y = Ax + e for some ‖e‖2 ≤ η. Let x̂ be the unique solution of

min
z∈RN

‖z‖(ω)
2,1 =

B∑
j=1

ωj‖z[Bj ]‖2

s. t. ‖Az− y‖2 ≤ η.
(3.6)

Then the following error bounds on the reconstruction hold

‖x− x̂‖(ω)
2,1 ≤ 2Cρσs(x)

(ω)
2,1 + 2Dρ,τ

√
sη (3.7)

‖x− x̂‖2 = ‖x− x̂‖(ω)
2,2 ≤ 2Cρ

σs(x)
(ω)
2,1√
s

+ 2Dρ,τη, (3.8)

where the constants Cρ and Dρ,τ are the ones from Corollary 3.1.
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Proof. The proof is obtained by letting z := x̂ be the optimal solution to Problem (3.6). It then follows

by optimality of the solution that ‖x̂‖(ω)
2,1 −‖x‖

(ω)
2,1 ≤ 0. Moreover, we have ‖A(x̂−x)‖2 ≤ 2η. Hence, by

injecting these two estimates, Equation (3.3) becomes

‖x̂− x‖2,p ≤
2Cρ
s1−1/p

σs(x)
(ω)
2,1 +

2ηDρ,τ

s1/2−1/p
.

Finally, letting p = 1 and then 2 concludes the proof. �

Definition 3. Let A ∈ Rm×N be a sensing matrix, B a block structure, and ω = (ωb)b∈B, with ωi ≥ 1,
be a sequence of weights. A is said to have the weighted block restricted isometry property of order
s ≥ ‖ω‖∞ with constant δ ∈ (0, 1) (WBRIP(s, δ)) with respect to the block structure B and weights ω if

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 (3.9)

holds for every x such that ‖x‖(ω)
0 ≤ s.

The smallest such constant δ is called the weighted block restricted isometry constant and is denoted
δs.

One should keep in mind that this definition depends on the block-structure considered. This condition
is sufficient for a stable and robust recovery of weighted block sparse signals, as stated in the following
theorem.

Theorem 3.1. Let A ∈ Rm×N and ω = (ω1, · · · , ωB) with ωi ≥ 1 be given for a block structure
B = (B1, · · · ,BB). Let s ≥ 2‖ω‖2∞ and δ2s be such that

δ2s <
1

2
√

2 + 1
. (3.10)

Assume that the matrix A fulfills the WBRIP(2s, δ2s). For any x ∈ RN , let y = Ax + e where e ∈ Rm
is some additive noise such that ‖e‖2 ≤ η. Then, x can be approximated via the weighted block `1

minimization

x̂ :=

{
argmin
z∈RN

‖z‖(ω)
2,1

s. t. ‖Az− y‖2 ≤ η

with the following error bounds

‖x− x̂‖(ω)
2,1 ≤ cδσs(x)

(ω)
2,1 + dδ

√
sη

‖x− x̂‖2 ≤
cδ√
s
σs(x)

(ω)
2,1 + dδη,

where the constants cδ := 2(1+δ2s(2
√

2−3))2

(1−δ2s)(1−δ2s(2
√

2+1))
and dδ := 2(3+δ2s(2

√
2−3))

√
1+δ2s

(1−δ2s)(1−δ2s(2
√

2+1))
depend only on the RIP

constant δ2s.

This theorem is a consequence of the following result

Theorem 3.2. Let A ∈ Rm×N and ω = (ω1, · · · , ωB) with ωi ≥ 1 be given for a block structure
B = (B1, · · · ,BB). Let s ≥ 2‖ω‖2∞ and δ2s satisfies the condition (3.10). Assume that the matrix A

fulfills the WBRIP(2s, δ2s). Then A fulfills the `2ω−BRNSP with parameters τ =
√

1+δ2s
1−δ2s and ρ = 2

√
2δ2s

1−δ2s .

Proof. The proof follows the classical ideas from [19, 30] with some changes and (local slight) improve-
ments.

Let v ∈ RN and S ∈ {1, · · · , B} be such that ω(S) ≤ s and partition Sc into l components
Sc = S1 ∪ S2 ∪ · · ·Sl such that (up to the last component Sl) all the B-supp have (almost) the same
weighted cardinality: s − ‖ω‖2∞ ≤ ω(Si) ≤ s. The subsets are ordered according to the non increasing
rearrangement of ‖v[Bi]‖2ω−1

i ; i.e. ‖v[Bj ]‖2ω−1
j ≥ ‖v[Bk]‖2ω−1

k for all j ∈ Si and k ∈ Si+1, 1 ≤ i ≤ l−1.
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It holds

‖A(v[S] + v[S1])‖22 =

∣∣∣∣∣
〈
A(v[S] + v[S1]), Av −

l∑
i=2

Av[Si]

〉∣∣∣∣∣
=

∣∣∣∣∣〈A(v[S] + v[S1]), Av〉 −
l∑
i=2

〈A(v[S] + v[S1]), Av[Si]〉

∣∣∣∣∣
≤
√

1 + δ2s ‖v[S ∪ S1]‖2 ‖Av‖2 +

l∑
i=2

(|〈Av[S], Av[Si]〉|+ |〈Av[S1], Av[Si]〉|)

Lemma 1
≤

√
1 + δ2s ‖v[S ∪ S1]‖2 ‖Av‖2 +

l∑
i=2

δ2s(‖v[S]‖2 + ‖v[S1]‖2)‖v[Si]‖2

≤
√

1 + δ2s ‖v[S ∪ S1]‖2 ‖Av‖2 +
√

2δ2s‖v[S ∪ S1]‖2
l∑
i=2

‖v[Si]‖2. (3.11)

The proof of Lemma 1 can be found in the Appendix A.3.
On the other hand, using the left hand side of the WBRIP (3.9), we have

‖v[S ∪ S1]‖22 ≤
1

1− δ2s
‖A(v[S] + v[S1])‖22.

Plugging back in (3.11) and simplifying yields

‖v[S ∪ S1]‖2 ≤
√

2δ2s
1− δ2s

l∑
i=2

‖v[Si]‖2 +

√
1 + δ2s

1− δ2s
‖Av‖2 (3.12)

Following the proof of Theorem 4.5 from [30], we can estimate
∑
i≥2 ‖v[Si]‖2. For every index k ∈ Si,

2 ≤ i ≤ l, we define λk := (
∑
j∈Si ω

2
j )−1ω2

k ≤
(
s− ‖ω‖2∞

)−1
ω2
k. Noticing that

∑
k∈Si λk = 1, it follows

that, for any ` ∈ Si ‖v[B`]‖2ω−1
` ≤

∑
k∈Si−1

λk‖v[Bk]‖2ω−1
k ≤

(
s− ‖ω‖2∞

)−1∑
k∈Si−1

‖v[Bk]‖2ωk. From

this we obtain

‖v[Si]‖22 =
∑
`∈Si

‖v[B`]‖22 =
∑
`∈Si

(‖v[B`]‖2ω−1
` )2ω2

`≤
∑
`∈Si

(s− ‖ω‖2∞)−1 ∑
k∈Si−1

‖v[Bk]‖2ωk

2

ω2
`

≤ 1

(s− ‖ω‖2∞)
2

(∑
`∈Si

ω2
`

) ∑
k∈Si−1

ωk‖v[Bk]‖2

2

Taking the square roots and remembering that
(∑

`∈Si ω
2
`

)
≤ s, we arrive at

‖v[Si]‖2 ≤
√
s

s− ‖ω‖2∞
‖v[Si−1]‖(ω)

2,1 ≤
2√
s
‖v[Si−1]‖(ω)

2,1 .

Finally, plugging back in Eq. (3.12) gives

‖v[S]‖2 ≤ ‖v[S] + v[S1]‖2 ≤
√

2δ2s
1− δ2s

l∑
i=1

2√
s
‖v[Si]‖(ω)

2,1 +

√
1 + δ2s

1− δ2s
‖Av‖2

≤ 2
√

2δ2s√
s(1− δ2s)

‖v[Sc]‖(ω)
2,1 +

√
1 + δ2s

1− δ2s
‖Av‖2,

which is the `2ω-BRNSP of order s and constants ρ = 2
√

2δ2s
1−δ2s ∈ (0, 1) as soon as Eq. (3.10) is fulfilled and

τ =
√

1+δ2s
1−δ2s . �

Proof of Theorem 3.1. The results follow Corollary 3.2 with the constants ρ and τ obtained in Theo-
rem 3.2. Indeed, assuming the the matrix S satisfies WBRIP(2s, δ2s), it follows that it satisfies the
`2ω-BRNSP with constants ρ, τ given in Theorem 3.2. Plugging back in Equations (3.7) and (3.8) gives
the desired results. �

4. Block sparse recovery in practice

We review here some constructions of matrices allowing to use weighted block sparse recovery.
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4.1. Subgaussian random matrices. Our first example is that of a random matrix. Following ideas
from [21] and adapting the block sparse recovery from [19], we show that a matrix with rows taken as
isotropic sub-Gaussian random variables fulfill the a certain WBRIP.

Theorem 4.1. Let Ã be an m ×N matrix obtained by stacking m isotropic independent sub-Gaussian
random vectors in RN and let k denotes their sub-Gaussian constant. Define A = Ã/

√
m. Let B be a

block structure with associated weights (ωi)i∈B, ωi ≥ 1. Let s ≥ ‖ω‖2∞ and δ ∈ (0, 1). Then A satisfies
the WBRIP (s, δ) with probability 1− ε, provided

m ≥ Ck4sδ−2 ln
(eκ
s

)
+ Ck4δ−2 ln

(
2

ε

)
. (4.1)

Here κ denotes the maximum number of blocks of the smallest size in the block structure.

Proof. Let us first introduce the set of admissible block supports (for a given weighted sparsity s and
sequence of weights (ωi)i∈B)

I := {I ⊆ B : ω(I) =
∑
i∈I

ω2
i ≤ s}.

Since ωi ≥ 1 for all i, it follows that |I| ≤ s for all I ∈ I. A counting argument yields

|I| ≤
(
dN/dmine

s

)
=

(
κ

s

)
, (4.2)

where dmin := minb∈B db and κ denotes the maximum number of blocks of the smallest possible size
(note that here κ is quite an overestimation of B, the number of blocks in the block structure.).

The goal of the proof is to bound the minimum and maximum singular values of the restrictions of A
to block support S ∈ I. To this end, define

σm := min
S∈I

σmin(AS),

σM := max
S∈I

σmax(AS),

where we let AS denote the matrix defined by extracting the columns from A supported on the blocks
of S.

Following the definition of the WBRIP (see Eq. (3.9)), we have that

1− δ ≤ σm ≤ σM ≤ 1 + δ, (4.3)

for a certain δ ∈ (0, 1).
We now recall a result from [35] about the minimum and maximum singular values of an isotropic

random matrix

Theorem 4.2. Let A be an m × n matrix whose rows Ai are independent, mean-zero, sub-Gaussian
isotropic random vectors in Rn. Then for any t ≥ 0 we have

P(σmax(A/
√
m) > 1 + ck2

√
n

m
+ t) ≤ e−

mt2

c2k4

P(σmax(A/
√
m) < 1− ck2

√
n

m
− t) ≤ e−

mt2

c2k4 .

where k denotes the ψ2 norm of the random vectors 2

Hence, Eq. (4.3) is violated, if it is violated for at least one of the support in I. A union bound
combined with Theorem 4.2 gives the upper bound. To this hand, notice that by taking the number of
measurements large enough (by increasing the constant in Eq. (4.1)), we can make ck2

√
n
m ≤ δ/2 and

letting t = δ/2 yields

P(σM > 1 + δ) ≤
∑
I∈I

P(σmax(AI) > 1 + δ) ≤
(
κ

s

)
e
−mδ2

c′k4 .

Together with the well known bound for binomial coefficients(
κ

s

)
≤
(eκ
s

)s
,

2The ψ2 norm is related to the sub-Gaussian constant, in other words, how close to a Gaussian the random variable is.
The interested reader may read more in the book [35].
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we arrive at

P(σM > 1 + δ) ≤ es ln(eκ/s)−mδ2
c′k4 .

One gets the same results for the lower bound on the smallest singular value. Hence, the singular values
are within [1− δ, 1 + δ] with probability higher than 1− ε provided

s ln(eκ/s)− mδ2

c′k4
≤ ln(ε/2).

Solving for m gives us the desired result.
�

Notes:

• This result generalizes the results of [19] in two ways: it considers random variables that are not
only Gaussian, but also sub-Gaussian and even those that may have non-independent entries.
Moreover, the use of weights allows for more flexibility in the model. Keep in mind that setting
all weights uniformly equal to 1 gives the result of [19] for Gaussian random variables.

• The use of isotropic sub-Gaussian rows is important to generate interest in such a model. Indeed,
the whole idea of weighted compressed sensing is to recover vectors for which we have prior
knowledge / belief about how the support should look like. What this means will become clearer
in the section below. If we dealt only with Gaussian (or in general for entries i.i.d. according to
a unique probability distribution) random variables, those weights would not bare any meaning.

For the purpose of comparison, assume that the blocks all have the same size. In this case, κ = N/d =
B := |B|. Let k ≤ s×κ be the true sparsity of the signal (measured independently of the block structure).
Our results tell that a number of measurements scaling as m ≥ C k

κ ln(ek), which is an improvement over
results for traditional compressed sensing.

4.2. Joint sparsity and weighted sparse recovery. Continuing the discussion above, in which all the
blocks have the same dimension, we may consider the case of joint sparsity in a multiple measurements
setup.

4.2.1. RIP for tensor product matrices. Here, we have d vectors, each of size B which are measured by
a single design matrix A ∈ Rm×B . This problem can be modeled as

Y = AX + Θ,

where X = [x1, · · · ,xd] ∈ RB×d and similarly Y = [y1, · · · ,yd] with yi = Axi plus some noise, which
is contained in the matrix Θ. The term joint sparsity refers to the case where all the vectors xi share
the same sparsity pattern. Letting S = ∪di=1 supp(xi), we say that the matrix X has a joint weighted
sparsity of order s (with respect to a sequence of weights ω1, · · · , ωB) if

∑
i∈S ω

2
i ≤ s.

This is an example of a block sparse model in the sense that, vectorizing every matrices row wise,
yields (forgetting the noise for now)

Ỹ = ÃX̃,

where Ỹ (resp. X̃) contains all the rows of Y (resp. X) stacked one above the other in a column format

and Ã = A⊗ I is the tensor product of A and the identity matrix.
The next theorem generalizes results from [19]:

Theorem 4.3. Let A ∈ Rm×B and let Ã = A⊗ Id. A satisfies the WRIP (s, δ) if and only if Ã satisfies
WBRIP (s, δ).

This result proves two things. 1) that we will not get more recovery matrices by using the joint
sparsity structure but 2) all matrices used for the recovery of a single vector can be used (after a tensor
product) for the recovery of joint sparse vectors. In particular, in the example we derive afterwards in
the context of high-dimensional parametric PDEs, we may use the sensing matrices used for orthonormal
systems to approximate the solution in a polynomial chaos expansion.

Proof. Remember that the traditional WRIP (s, δ) of a matrix A reads

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22, for all weighted s-sparse x. (4.4)

Before we show the equivalence, let us rephrase the WBRIP and WRIP for this particular tensor product

structure. Note that for any vector X̃ ∈ RN vectorized from a matrix X ∈ RB×D, BD = N , we have

‖ÃX̃‖22 = Tr(XTATAX) = ‖AX‖2Frob and ‖X̃‖22 = ‖X‖2Frob.
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Hence the WBRIP is equivalent to

(1− δ)‖X‖2Frob ≤ ‖AX‖2Frob ≤ (1 + δ)‖X‖2Frob for all s-weighted joint sparse X. (4.5)

Assume (4.5) holds. Let x ∈ RB be a weighted s sparse vector. And let X be the matrix with d copies
of x. Then ‖X‖2Frob = d‖x‖22 and ‖AX‖2Frob = d‖Ax‖22. X being weighted joint sparse of order s and
simplifying by d, (4.4) follows.

Conversely, assume that (4.4) holds and let x1, · · · ,xd be d B-dimensional vectors which all are
weighted s-sparse, with the same sparsity pattern. It holds

(1− δ)‖xi‖22 ≤ ‖Axi‖22 ≤ (1 + δ)‖xi‖22, for all 1 ≤ i ≤ d.

Summing for all i results in

(1− δ)
d∑
i=1

‖xi‖22 = (1− δ)‖X‖2Frob ≤
d∑
i=1

‖Axi‖22 = ‖AX‖2Frob ≤ (1 + δ)

d∑
i=1

‖xi‖22 = (1 + δ)‖X‖2Frob.

�

A consequence is the following theorem, which we require in the next section

Theorem 4.4. For some parameters δ, γ ∈ (0, 1), let (ψj)j∈Λ with |Λ| = B a finite dimensional or-
thonomal basis with orthogonalization measure η. Let ω = (ωi)1≤i≤B with ωi ≥ ‖ψj‖∞ be a sequence of
weights. Let

m ≥ Cδ−2smax{log3(s) log(B), log(1/γ)}.
Given m samples y(i), drawn independently at random from η, let A ∈ Cm×B be the design matrix whose
entries are defined as aij = 1√

m
ψj(y

(i)).

Then A⊗ IJ fulfills the weighted joint sparse RIP defined in (4.5).

The proof is simply the result of Theorem (4.3) applied to matrices from orthonormal systems fulfilling
the weighted RIP, see [30].

4.3. Parametric function approximation. In this section, we analyze the use of joint sparsity for
the approximation of parametric functions. A parametric function is defined as

f :
Ω× U → R
(x,y) 7→ f(x;y).

Here y denotes a vector of parameters while Ω ⊂ Rn with usually n ∈ {1, 2, 3} denotes the spatial
domain for the spatial variable x. We want U = [−1, 1]d to be high-dimensional (up to countably many
parameters)3.

Assumption 1 (Decoupling). The parameter and spatial coordinates are decoupled. This implies that f
lives in a tensor product space f ∈ X ⊗P . Throughout, X will denote a Hilbert space, associated to the
norm ‖ · ‖X , and inner product 〈·, ·〉X (we drop the subscript when it is clear from the context).

Assumption 2 (Tensorized polynomials). The parameter space is itself a tensor space and is spanned by
(tensorized) polynomials. Hence, given an orthonormal basis of polynomials (Ti)i∈N0

for [−1, 1], we may
write P ⊂ span{Tν : ν ∈ F} where

F := {ν ∈ Nd0 : ‖ν‖0 := supp(ν) <∞} (4.6)

is the set of multi-indices with finite support and Tν(y) =
∏
i∈supp(ν) Tνi(yi) corresponds to the tensorized

polynomial with (multi)index ν ∈ F . We will for now assume that only finitely many polynomials are
needed; i.e. there exists Λ ⊂ F with |Λ| = N <∞ such that Y = span{Tν : ν ∈ Λ}. We assume moreover
this family of polynomial is orthonormal with respect to a measure η and denote the associated inner
product as 〈·, ·〉.

Since X is a Hilbert space, it enjoys a countable family as an orthonormal basis (ϕj)j∈J . All this
together allows us to write the decoupling equation

f(x;y) =
∑

ν∈Λ,j∈J
f jνϕj(x)Tν(y).

3Note the unorthodox semi-colon notation to emphasize the difference in roles played by x and y.
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The goal is to find an approximation f# which is close enough to f in a Bochner sense, for p ≥ 1:

‖f − f#‖pLp(X ;U,η) =

∫
y∈U

‖f(·;y)− f#(·;y)‖pXdη(y) (4.7)

with the classical adaptation via ess-sup in the case p =∞.
Given the assumptions above, this can be easily recast to the problem of recovering a joint-sparse

matrix as in the previous section. This matrix can in theory be infinite, as it is indexed over j ∈ J . In
applications, we deal with finite subspaces of the Hilbert space X . Moreover, since (ϕj)j∈J is assumed
to be an orthonormal basis, its associated pair of analysis / synthesis operators S : X → `2(J ), S∗ :
`2(J )→ X are isometries

S :

{
X → `2(J )
v 7→ v := Sv = (〈v, ϕj〉X )j∈J

and S∗ :

{
`2(J ) → X

v := (vj)j∈J 7→ v := S∗v =
∑
j∈J vjϕj

In particular, such mappings preserve the inner products and satisfy Parseval’s identity, for all v, w ∈ X ,

〈v, w〉X = 〈Sv, Sw〉`2(J ),

‖v‖X = ‖Sv‖`2(J ). (4.8)

Two values for p in (4.7) are particularly important: p = 2 and p =∞. Indeed4 , for p = 2,

‖f − f#‖2L2 =

∫
y∈U

‖f(y)− f#(y)‖2Xdη(y)

=

∫
y∈U

〈
f(y)− f#(y), f(y)− f#(y)

〉
X dη(y)

=

∫
y∈U

〈∑
ν∈Λ

(
fν − f#

ν

)
Tν(y),

∑
µ∈Λ

(
fµ − f#

µ

)
Tµ(y)

〉
X

dη(y)

=

∫
y∈U

∑
ν∈Λ

∑
µ∈Λ

Tν(y)Tµ(y)〈fν − f#
ν , fµ − f#

µ 〉Xdη(y)

=
∑
ν∈Λ

∑
µ∈Λ

〈fν − f#
ν , fµ − f#

µ 〉X
∫

y∈U

Tν(y)Tµ(y)dη(y)

=
∑
ν∈Λ

∑
µ∈Λ

〈fν − f#
ν , fµ − f#

µ 〉X 〈Tν , Tµ〉η

=
∑
ν∈Λ

‖fν − f#
µ ‖2X =: ‖f − f#‖2X ,2. (4.9)

If F = (Sfν)ν∈Λ corresponds to the matrix of coefficients: Fij = f ji , i ∈ Λ, j ∈ J , the last equality is
given by ‖F − F#‖2Frob. Note that we have abused some notations: L2 as a shorthand for the Bochner
norm, dropping the x or · in the mappings f evaluated at parameter vectors y. For p =∞:

‖f − f#‖L∞ = ‖
∑
ν∈Λ

(
fν − f#

ν

)
Tν‖L∞ = max

y∈U
‖
∑
ν∈Λ

(
fν − f#

ν

)
Tν(y)‖X

≤
∑
ν∈Λ

‖fν − f#
ν ‖X ‖Tν‖∞

≤
∑
ν∈Λ

‖fν − f#
ν ‖Xων = ‖f − f#‖(ω)

X ,1 = ‖F − F#‖(ω)
2,1 , (4.10)

assuming we have chosen a weight sequence (ων)ν∈Λ such that ‖Tν‖∞ ≤ ων . Eqs. (4.9) and (4.10)
tell us that the approximation of the function can be estimated using mixed norms, as introduced for
the block or joint sparse model. These norms have been extended to the case of blocks being vectors
in function spaces, with the associated norms. More precisely, using sparse approximation techniques,
Theorem 3.1 gives us bounds on the recovery when using block-sparse minimization. Assuming that
our target (parametric) function f is well approximated by block/joint-sparse vectors, then Theorem 3.1

4One could arrive at the same result and spare some time reading the derivation by introducing the inner product
induced by the tensor product of two Hilbert spaces (X and U). We choose not to use this –valid– abstract setting.
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indeed gives an accuracy of the approximation and a number of function evaluations required. This is
the main point of our next theorem.

Theorem 4.5. Let (Tν)ν∈Λ, |Λ| = B <∞ be a finite orthonormal system with orthogonalization measure
η. Let ω = (ων)ν∈Λ, with ων ≥ ‖Tν‖∞, be a sequence of weights. Let s ≥ 2‖ω‖2∞ and γ ∈ (0, 1). Let

m ≥ Csmax{log3(s) log(B), log(γ−1)}
and draw m samples y(i), 1 ≤ i ≤ m independently at random from η. Furthermore, let A be the sensing
matrix obtained by evaluating the basis functions at the given samples; i.e. Ai,ν = Tν(y(i)).

Then, with probability at least 1 − γ, the following holds for all functions f =
∑
ν∈Λ fνTν ∈ X ⊗ PΛ

with fν ∈ X = span{ϕj : j ∈ J }, where (ϕj)j∈J is a finite orthonormal system. For 1 ≤ i ≤ m, let

Y Ti := (〈f(y(i)), ϕj〉)j∈J + εi ∈ R1×J be the (noisy) coefficients of the target function evaluated at y(i),

with
√∑

i ‖εi‖22 ≤ ε. Let F̃ be the solution of

min
Z∈RΛ×J

‖Z‖(ω)
2,1 , subject to ‖AZ − Y ‖Frob ≤ ε.

and consider f̃(x;y) :=
∑
ν∈Λ

∑
j∈J F̃

j
νTν(y)ϕj(x). Then

‖f − f̃‖L∞ ≤ ‖F − F̃‖(ω)
2,1 ≤ cσs(F )

(ω)
2,1 +

d√
m
ε,

‖f − f̃‖L2 = ‖F − F̃‖(ω)
2,2 ≤

c′√
s
σs(F )

(ω)
2,1 +

d′√
m
ε,

for some universal constants c, d and c′, d′.

We will in fact prove a stronger theorem, which works in (potentially) infinite dimensional spaces X ,
without mentioning a specific basis.

Theorem 4.6. Let (Tν)ν∈Λ, |Λ| = B <∞ be a finite orthonormal system with orthogonalization measure
η. Let ω = (ων)ν∈Λ with ων ≥ ‖Tν‖∞ be a sequence of weights. Let s ≥ 2‖ω‖2∞ and γ ∈ (0, 1). Let

m ≥ Csmax{log3(s) log(B), log(γ−1)}
and draw m samples y(i), 1 ≤ i ≤ m independently at random from η. Furthermore, let A be the sensing
matrix obtained by evaluating the basis functions at the given samples; i.e. Ai,ν = Tν(y(i)).

Then with probability at least 1 − γ, the following holds for all functions f =
∑
ν∈Λ fνTν ∈ X ⊗ PΛ

with fν ∈ X . For 1 ≤ i ≤ m, let b(i) approximates fΛ(y(i)) :=
∑
ν∈Λ fνTν(y(i)) with accuracy ε. Let F̃

be the solution of

min
z∈X⊗PΛ

‖z‖(ω)
X ,1, subject to ‖Az − b‖2 ≤

√
mε.

and consider f̃(x;y) :=
∑
ν∈Λ F̃ν(x)Tν(y). Then

‖f − f̃‖L∞ ≤ ‖f − f̃‖(ω)
X ,1 ≤ cσs(f)

(ω)
X ,1 + d

√
sε,

‖f − f̃‖L2 = ‖f − f̃‖(ω)
X ,2 ≤

c′√
s
σs(f)

(ω)
X ,1 + d′ε,

for some universal constants.

Proof. Given the number of measurements, the matrix A/
√
m fulfills the WBRIP, according to Thm. 4.4.

This implies the approximation bounds by applying Theorem 3.1 to the matrix of coefficients. Finally,
the computations above this theorem yield the bounds on the error of the functions in terms of norms
in Bochner spaces. �

Remark 4.1. Theorem 4.5 is obtained by applying Theorem 4.6 and Parseval identity (4.8) so that the
norms obtained on X are transferred to an `2 norm on the coefficients.

5. Application: Approximation of high-dimensional parametric PDEs

This section extends results for the numerical approximation of high-dimensional parametric elliptic
PDEs. Using a compressed sensing approach, [29, 7] were interested in computing quantities of interest
of a parametric solution. Namely [29] introduced the method from a theoretical point of view, while [7]
investigates the numerical applicability of the method, approximating solutions to a diffusion problem
in relatively high (parametric) dimensions; even infinite, when considering a truncated operator, as is
explained later on in Eqs. (5.14) and (5.15). Here, we want to approximate the full-solution, point-wise
in the spatial coordinate x, uniformly for all parameter y. Note that an improved computational
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complexity may be obtained by a multi-level approach [9], but this is left aside to avoid overcomplicating
the notations and exposition. While in the previous Section we were considering any polynomial basis
for the space of parameters, we will from now on specialize our results to the Chebyshev system.

Let us first recall that the univariate Chebyshev polynomials form an orthogonal family with respect
to the orthogonolization measure

dη1(t) =
dt

π
√

1− t2
and defined as

Tj(t) =
√

2 cos (j arccos(t)) , j ≥ 1 T0 ≡ 1.

We are dealing here with multivariate polynomial. Define, for y ∈ U

dη(y) :=
⊗
j≥1

dη1(yj)

the tensorized orthogonalization measure and, for ν ∈ F

Tν(y) =
∏

j:νj 6=0

Tνj (yj).

The set of tensorized Chebyshev polynomials is orthonormal with respect to dη. Moreover, it holds

‖Tν‖∞ = 2‖ν‖0/2. (5.1)

5.1. Affine parametric operator equations. We consider a family of operator equations

A(y) : X → Y ′, A(y) = A0 +
∑
j≥1

yjAj (5.2)

and try to (numerically) approximate u(·;y) ∈ X such that A(y)u(y) = f , uniformly for all parameter
y. Should the operator A(y) be invertible for all y, this problem accounts to stably inverting the family
of operators. While the linear dependence may be seen as a strong limitation, one should remember that
such decompositions may be obtained for instance by variance decomposition methods of stochastics fields
such as the Karhunen Loève decomposition, see [15, 33]. To generalize even more, the only requirement
for this work to apply, is that the solution be analytic with respect to any finite subset of the parameters;
the linear dependence is just one example where this is the case. Throughout, we will assume the mean
field A0 to be invertible.

A prototypical example is given by the Poisson problem in divergence form

−div(a(·;y)∇u) = f, in Ω

set on a Lipschitz bounded domain Ω ⊂ Rn for a (spatial) dimension n ∈ N (typically n ∈ {1, 2, 3}) with
Dirichlet boundary conditions u|∂Ω ≡ 0. We assume that the diffusion coefficient has an affine-linear
dependence on the parameter y, in the sense that there exists (ψj)j∈N such that

a(x;y) = ā(x) +
∑
j∈N

yjψj(x)

for every x ∈ Ω and j ∈ U = [−1, 1]N. The functions ā and ψj are taken in L∞(Ω). Here the solution space
is given by X = Y = H1

0 (Ω) with the usual inner product; whence we consider f ∈ Y ′ = X ′ = H−1(Ω).

5.1.1. Existence of solutions. It is now mathematical folklore that solutions to (5.2) exist whenever the
family of operators fulfills a certain uniform ellipticity assumption (UEA). For the purpose of our work,
we require (and express only) a somewhat stronger version of this assumption, written in a weighted
form, with weights (vj)j≥1:∑

j≥1

v
(2−p)/p
j b0,j ≤ κv,p < 1, b0,j := ‖A−1

0 Aj‖L(X ,X ). (wUEA)

Let us first introduce some properties. Namely, we say that the family of operators A(y) is inf − sup-
stable if there exists a µ such that

inf0 6=v∈X sup0 6=w∈Y
〈A(y)v,w〉
‖v‖X ‖w‖Y ≥ µ > 0,

inf06=w∈Y sup06=v∈X
〈A(y)v,w〉
‖v‖X ‖w‖Y ≥ µ > 0,

(5.3)

where we have used the duality bracket notation.
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Proposition 5.1. Assume A0 is inf − sup stable (i.e. (5.3) holds at least for y = 0, with constant µ0 > 0)
and assume that (wUEA) holds for some weights vj ≥ 1, j ≥ 1. Then for any y ∈ U , the weak solution
u(y) exists and is unique and satisfies the uniform estimates

sup
y∈U
‖u(y)‖X ≤

1

µ0(1− κv,p)
‖f‖Y′ .

Proof. The inf − sup conditions are equivalent to the bounded invertibility of the operator. Moreover,
since the inf − sup conditions hold for the mean field A0, the invertibility of the operator A(y) is done
by considering a Neumann perturbation argument; i.e. writing A(y) = A0(I +

∑
j≥1 yjA

−1
0 Aj), we see

that ∑
j≥1

b0,j ≤
∑
j≥1

b0,jv
(2−p)/p
j ≤ κv,p < 1.

The result follows. �

5.1.2. Main result: Approximation of high-dimensional parametric PDEs. The problem described above
having indeed (a family of) solutions, we may approximate them numerically, uniformly for all parame-
ters.

Theorem 5.1. Let A be an affine family of operators as defined in (5.2) and let u be the solution
to A(y)u = f . Assume that the inf − sup conditions (5.3) and (5.9) hold for the mean-field A0. Let
p ∈ (0, 1) and assume that (wUEA) hold for a given weight sequence v = (vj)j∈N, with vj ≥ 1, for all
j ∈ N. Assume moreover that the sequence of operators are compressible, in the sense that∑

j∈N
v2−p
j bp0,j <∞. (5.4)

Define the sequence of weights

ων := 2‖ν‖0vν = 2‖ν‖0/2
∏

j:νj 6=0

v
νj
j , for all ν ∈ F . (5.5)

Let ε be a target accuracy and let s be such that

21/p−1
√

5s1/2−1/p‖u‖X ,p ≤ ε.
Let Λ := {ν ∈ F : ω2

ν ≤ s/2} such that N := |Λ| <∞. Let

m ≥ c0s log3(s) log(N)

and draw m sampling points y(1), · · · ,y(m) i.i.d. from η and let bi ∈ X be an approximation of u(y(i))
such that ‖bi − u(y(i))‖X ≤ ε. Finally, let ũ be the solution to

min
z∈X⊗PΛ

‖z‖(ω)
X ,1, s.t. ‖Az − b‖X ,2 ≤ 2

√
mε. (5.6)

Then the following bounds hold

‖u− ũ‖L∞(X ;U,η) ≤ Cs1−1/p‖u‖(ω)
X ,p + C ′

√
sε

‖u− ũ‖L2(X ;U,η) ≤ Ds1/2−1/p‖u‖(ω)
X ,p +D′ε.

The goal of the following part of this paper is to verify all the assumptions and conditions mentioned
in the previous sections to prove the main theorem, by applying Theorem 4.5 to this particular problem.

5.2. Truncation to finite dimensional problems. So far the problem is a continuous, infinite one
and we need some ways to discretize and truncate it before handling its resolution numerically. This
takes two forms: truncating the continuous function space of solution (typically what Finite Elements
and similar discretization methods deal with) and truncating the space of polynomial to a finite one.

As described in the previous section, the basic idea is to decouple the space and parameter variables.
Hence given a (countable) orthonormal set (ϕj)j≥1 of X and a (countable) set of tensorized (Chebyshev)
polynomials (Tν)ν∈F . The solution may then be expressed as

u(x;y) =
∑
ν∈F

∑
j≥1

ujνϕj(x)Tν(y).

The challenges will be to find finite dimensional spaces X h = XJ ⊂ X and Λ ⊂ F such that the
approximation

ũ(x;y) =
∑
ν∈Λ

∑
j∈J

ũjνϕ
h
j (x)Tν(y)

is close enough to the original sought after function.
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5.2.1. Petrov-Galerkin discretization. Throughout the rest of this note we assume given scale of smooth-
ness spaces {Xt}0≤t≤t̄ such that

X := X0 ! X1 ! · · · ! Xt̄, (5.7)

where the spaces are defined by interpolation for the non-integer indices.
We also consider at our disposal a one-parameter family of finite-dimensional spaces {X h}h>0 with

Nh := dim(X h) <∞. We assume that the spaces {X h}h are dense in X as h→ 0.

Assumption 3 (Approximation property of the discrete spaces). We assume the that discretization spaces
have the approximation property in the smoothness scale (5.7): for 0 < t ≤ t̄, there exists a constant Ct,
such that for all 0 < h ≤ 1, and all u ∈ Xt, it holds

inf
uh∈Xh

‖u− uh‖X ≤ Ctht‖u‖Xt . (5.8)

Namely, we say that the family of operators A(y) is inf − sup-stable in the discretization spaces if
there exist constants µd > 0 and h0 > 0 such that for all 0 < h ≤ h0

inf06=v∈Xh sup06=w∈Yh
〈A(y)v,w〉
‖v‖X ‖w‖Y ≥ µd,

inf06=w∈Yh sup06=v∈Xh
〈A(y)v,w〉
‖v‖X ‖w‖Y ≥ µd.

(5.9)

We recall the following classical result (see for example [5, Chapter 6]).

Proposition 5.2. Let X h and Yh be discretization spaces for the PG method, such that the uniform
discrete inf − sup conditions (5.9) are fulfilled and assume that the bilinear operator X × Y 3 (u,w) 7→
〈A(y)u,w〉 is continuous, uniformly with respect to y ∈ U .

Then the PG projections Gh(y) : X → X h are well-defined linear operators, whose norms are uni-
formly bounded with respect to the parameters y and h, i.e.,

sup
y∈U

sup
h>0
‖uh(y)‖X ≤

1

µd
‖f‖Y′ , (5.10)

sup
y∈U

sup
h>0
‖Gh(y)‖L(X ) ≤

C

µd
(5.11)

The Galerkin projections are uniformly quasi-optimal: for every y ∈ U we have the a-priori error bound

‖u(y)− uh(y)‖X ≤
(

1 +
C

µd

)
infvh∈Xh ‖u(y)− vh‖X . (5.12)

As a consequence, combining Eq. (5.12) with Eq. (5.8) ensures us the following approximation for
every u ∈ Xt:

‖u−Ghu‖X ≤ C ′tht‖u‖Xt . (5.13)

An important point to notice is that (5.13) is valid uniformly for all vectors y ∈ U . The goal of the
compressed sensing approach is to compute the finite-dimensional approximation Ghu, hereby breaking
(one part of) the infinite dimensionality of the problem.

5.2.2. Parameter truncation. Following (5.13), we can discretize the infinite dimensional minimization to
a manageable, finite dimensional one. Looking at the parameter space, we still face two major problems:
the first one is that the number of parameters may be infinite (but countable) and the second is that the
set of multi-indices (see (4.6)) that we use is also infinite (countable) even if the number of parameters
is finite.

Wlog we can assume that the Aj are ordered in decreasing order of their energies, i.e. b0,j ≥ b0,j+1,
for all j. We assume some decay of the energy of the operator A(y) such that for any ε > 0, there exists
τ := τ(ε,A) with

‖A(y)−A(τ)(y)‖L(X ,Y′) ≤ εµ, ∀y ∈ U , (5.14)

where µ is the constant appearing in the inf − sup conditions and we define the weak solutions of the
truncated version of Eq. (5.2):

Find u(τ) ∈ X , such that 〈A(τ)(y)u(τ), v〉 = 〈f, v〉 for all v ∈ Y, (5.15)

with the operator A(τ)(y) defined for a finite τ ∈ N as A(y1, y2, · · · , yτ , 0, 0, · · · ).
In this case, the following result, taken from [9], generalizing results in [16] holds.
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Proposition 5.3. Assume the family of operators A satisfy the inf − sup conditions and the decay
property (5.14). Then for any accuracy parameter ε, there exists a truncation parameter τ ∈ N such that
the solutions to the truncated problem (5.15) and to the original problem (5.2) are close to each other in
the following sense

‖u(τ)(y)− u(y)‖X ≤
Cε

µ
‖f‖Y′ , (5.16)

where u(τ)(y) is the solution of the truncated problem (5.15).

A sufficient condition for (5.14) to hold is to have (b0,j)j≥1 ∈ `1(N). A consequence of this result
is that it is possible to sample only in the finite dimensional spaces [−1, 1]τ instead of in the infinite
space U . One last step towards lowering everything to a finite dimensional problem is to truncate the
polynomial space used for the approximation.

To this end we need an infinite dimensional version of Theorem 4.5. This theorem being of interest on
its own, we have written it in a very general form, independently from the parametric PDE application
that we have in mind.

Theorem 5.2. Suppose (Tν)ν∈F is a countable orthonormal system, indexed by F , with orthogonalization
measure η. Assume given some weights (ων)ν∈F such that ων ≥ ‖Tν‖∞ for all ν ∈ F . For a parameter
s ≥ 1 define Λ := {ν ∈ F : ω2

ν ≤ s/2} and assume N := |Λ| <∞ and let

m ≥ c0s log3(s) log(N). (5.17)

For a function f ∈ X ⊗PΓ with f(x;y) =
∑
ν∈F fν(x)Tν(y) and fν ∈ X , draw m samples y(1), · · · ,y(m)

i.i.d. from η and let A := (Tν(y(i)))1≤i≤m;ν∈Λ be the sampling matrix. Assume that there exists a

0 < p < 1 such that ‖f‖(ω)
X ,p <∞. Let ε > 0 such that

ε ≥ 21/p−1
√

5s1/2−1/p‖f − fΛ‖(ω)
X ,p. (5.18)

Let bi be an approximation of f(y(i)) such that ‖bi − f(y(i))‖X ≤ ε and let z̃ be the solution of

min ‖z‖(ω)
X ,1, s.t. ‖Az − b‖X ,2 ≤ 2

√
mε.

The following bounds hold for the function f̃(x;y) :=
∑
ν∈Λ Tν(y)z̃ν(x)

‖f − f̃‖L∞ ≤ ‖f − f̃‖(ω)
2,1 ≤ cσs/2(f)

(ω)
X ,1 + d

√
sε,

‖f − f̃‖L2 = ≤ c′√
s
σs/2(f)

(ω)
2,1 + d′ε.

with c, d and c′, d′ universal constants.

Proof. This results is obtained by modifying the proof of [30, Theorem 1.2] to the joint sparsity structure.
The whole idea is to split the infinite extension into an interesting part and a residual ; this corresponds
to a decomposition of the function f =

∑
ν∈F fν =

∑
ν∈Λ fν +

∑
ν∈R fν =: fΛ + fR, where we define the

residual set as R = F\Λ. Our goal is to show that the residual is small enough, given the number of
samples.

Let y(1), · · · ,y(m) be m samples drawn i.i.d. from the orthogonalization measure η. Following the
calculations leading to (4.9), we obtain

E
[
‖fR(y(i))‖2X

]
=

∫
y∈U

‖fR‖2Xdη(y) = ‖fR‖2X ,2 = ‖FR‖22,2,

where FR:= (f jν )ν∈R;j∈J denotes the infinite matrix containing the coefficients fν (ν ∈ R) expanded on
the basis of X .

Furthermore, by definition of the sets Λ and R, we have ω2
ν > s/2 for all ν ∈ R hence

‖fR‖2X ,2 ≤
2

s

∑
ν∈R

ω2
ν‖fν‖2X ≤

2

s

(∑
ν∈R

ων‖fν‖X

)2

=
2

s
‖fR‖(ω)

2,1

2
.

Therefore the random variable z` := ‖fR(y(`))‖2X − E
[
‖fR(y(`))‖2X

]
is a zero mean random variable

with variance

E
[
z2
`

]
= E

[(
‖fR(y(`))‖2X − E

[
‖fR(y(`))‖2X

])2
]
≤ E

[
‖fR(y(`))‖4X

]
.
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Moreover, for any y ∈ U , we have ‖fR(y)‖X = ‖
∑
ν∈R fνTν(y)‖X ≤

∑
ν∈R ‖Tν‖∞‖fν‖X ≤ ‖fR‖

(ω)
X ,1, we

obtain

E
[
z2
`

]
≤ ‖fR‖(ω)

X ,1
2
E
[
‖fR(y(`))‖2X

]
≤ 2

s
‖fR‖(ω)

X ,1
4
.

Note that this last quantity is bounded by our assumption.
Finally, applying Bernstein’s inequality, for all t > 0

P

(∣∣∣∣∣ 1

m

m∑
`=1

∥∥∥fR (y(`)
)∥∥∥2

X
− ‖fR‖2X ,2

∣∣∣∣∣ ≥ t
)
≤ exp

− mt2/2

2‖fR‖ωX ,1
4
/s+ t‖fR‖(ω)

X ,1
2
/3

 .

Setting t = 3
s‖fR‖

(ω)
X ,1

2
gives

P

(∣∣∣∣∣ 1

m

m∑
`=1

∥∥∥fR (y(`)
)∥∥∥2

X
− ‖fR‖2X ,2

∣∣∣∣∣ ≥ 3

s
‖fR‖(ω)

X ,1
2

)
≤ exp

(
−3m

2s

)
.

Plugging in the number of samples m in Eq (5.17) gives the probability in the truncation error

P

(
m∑
`=1

∥∥∥fR (y(`)
)∥∥∥2

X
≥ 5m

s
‖fR‖(ω)

X ,1
2

)
≤ N− log3(s)

By applying Stechkin’s bound (2.4) and the definition Λ, we may bound

‖fR‖(ω)
X ,1 ≤ σs/2(f)

(ω)
X ,1

(
1

s/2

)1/p−1

‖f‖(ω)
X ,p = 21−1/p21/p−1‖f‖(ω)

X ,p.

It follows from Eq. (5.18), that

P

(
m∑
`=1

∥∥∥fR (y(`)
)∥∥∥2

X
≥ mε2

)
≤ P

(
m∑
`=1

∥∥∥fR (y(`)
)∥∥∥2

X
≥ 5m

s
‖fR‖(ω)

X ,1
2

)
≤ N− log3(s).

By assumption, we have ‖b(i)f(y(i))‖X ≤ ε for all 1 ≤ i ≤ m. Hence, altogether ‖b− fΛ‖X ,2 ≤ 2
√
mε.

We may now apply Theorem 4.6 which gives the bounds on the error.
�

5.3. Proof of Theorem 5.1. We are now ready to prove our Theorem.

5.3.1. Varifying the assumptions. The existence of solutions is given by the summability of the weight
sequence v in Eq. (wUEA). And it follows from Proposition 5.2 that we may approximate our solutions
by Petrov-Galerkin discretization.

Assume we are given samples b(l) which corresponds to the Petrov-Galerkin discretization of the
truncated operator. Because of Proposition 5.3, Proposition 5.2 and the following Eq. (5.13), we can
find solvers such that

‖b(l) − u(y(l))‖X ≤ ε.
The weighted `p summability of the solution u in F requires a result from [29]

Theorem 5.3. Let 0 < p ≤ 1. Assume that the summability conditions (5.4) and (wUEA) hold for
some weight sequence v. For θ ≥ 1 construct a sequence of weights ω = (ων)ν∈F on F with ων = θ‖ν‖0vν .
Then the sequence of norms (‖uν‖Xh)ν∈F ∈ `pω(F).

In particular, for θ =
√

2, we ensure that 1) ων ≥ ‖Tν‖∞ (see (5.1)) and 2) ‖u‖X ,p = (
∑
‖uν‖pX )

1/p
<

∞. It then follows from the weighted Stechkin bound from Proposition 2.1 and Eq. (2.4) that

σs(u)(ω)
r,p ≤ σ̃s(u)(ω)

r,p ≤ (s− ‖ω‖2∞)
1
p−

1
q ‖u‖(ω)

r,q

so that when plugged back into the a priori bounds obtained from Theorem 5.2 we arrive at

‖u− ũ‖L∞(X ;U,η) ≤ cσs/2(u)
(ω)
X ,1 + c′

√
sε+ ‖fR‖L∞(X ;U,η)

≤ cσs/2(u)
(ω)
X ,1 + c′

√
sε+ ‖fR‖(ω)

X ,1 ≤ (c+ 1)σs/2(u)
(ω)
X ,1 + c′

√
sε,

where the first inequality is a computation done in the proof of Theorem 5.2. The bound is then obtained
by applying Stechkin’s bound. We can make the same computations for the L2 error bound, using the

fact that ‖uR‖L2(X ;U,η) ≤
√

2
s‖uR‖

(ω)
X ,1.
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5.3.2. A remark on the size of the parameter space. It is important to notice that the theorem is valid
for a space of multi-indices Λ with N elements. The theorem is only relevant in case the size of this
space remains small. To this end, we recall the following results from [29]:

Proposition 5.4. Assume s ≥ 1.

(1) (constant weights) Let ωj = β, j = 1 . . . d, for some β > 1 and ωj =∞ for j > d. Then

N ≤

{
(logβ2(β2s/2))d, if d ≤ log2β2(s/2),((

1 + 1
log2(β2)

)
ed
)log2β2 (s/2)

, otherwise.

(2) (polynomially growing weights) Let ωj = cjα for j ≥ 1 and some c > 1 and α > 0. Then there
exist constants Cα,c > 0 and γα,c such that

N ≤ Cα,csγα,c log(s).

Plugging back these estimates into the main theorem means that the total number of sampling is
linear, with polylog factors, in the weighted sparsity s.

6. Final remarks

A weakness which has not been addressed here is the reliance of the optimization problem on the
knowledge of the weighted `p norm of the expansion. Some recent results have shown that such opti-
mization problem are stable when the noise is not known [10].

Another approach to overcome the necessity of knowing the noise is to adapt greedy and iterative
approximation algorithms (such as Orthogonal Matching Pursuit, Hard Thresholding Pursuit [20] and
its Graded variants [8, 6], Null-space tuning [27], CoSaMP [28] or Iterative Hard Thresholding [4, 25]).
These algorithms need to be analyzed in the context of weighted sparsity and then adapted to fit the
vector-valued function recovery. This has only recently started being tackled in research [1] and already
shows quite a lot of potential.
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Appendix A. Quasi-approximations

A.1. Proof of inequality. (2.3) Without loss of generality, assume that the entries of x are (weighted)

ordered, i.e. x = x̃. Let k3s := max{k :
∑k
i=1 ω

2
i ≤ 3s}, and T be the subset {1, 2, · · · , k3s}. By

definition, it holds ω(T ) ≤ 3s. By virtue of ‖ω‖2∞ ≤ s it also holds that ω(T ) ≥ 2s (otherwise, we could
add another index to the set T contradicting the optimality of k3s). Similarly, let S be the support of
the quasi-best weighted s block approximation, i.e. S = {1, · · · , ks}. Note that since ωj ≥ 1 it follows
directly, that the true (=non-weighted) cardinality of S fulfills |S| ≤ s. Define nb = bω2

b +1c and consider
the residue rb = nb − ω2

b for b ∈ B. We have∑
j∈S

nj ≤
∑
j∈S

ω2
j + s ≤ 2s ≤ ω(T ) ≤

∑
j∈T

nj .

The goal of the proof is to group copies of blocks which themselves embed the weight information.
Let then, for a given inner norm ‖ · ‖ acting on the blocks (not necessarily the same for each block)
z = (‖x[b]‖p/ωpb1nb−1, (1− rb)‖x[b]‖/ωpb )

b∈B where 1nb−1 denotes the row vector containing nb− 1 ones.

Altogether, the vector z contains (ordered) nb terms which sum up to ‖x[b]‖pω2−p
b for all b ∈ B. Finally

‖x‖(ω)
‖·‖/p

p
= max

{∑
b∈S

ω2
b‖x[b]‖p/ωpb : S ⊂ B, ω(S) ≤ s

}

≤ max

{∑
b∈S

ω2
b‖x[b]‖p/ωpb : S ⊂ B,

∑
b∈S

nb ≤
∑
b∈T

nb

}

≤ max

{∑
b∈S

‖z[b]‖1 : S ⊂ B, |S| ≤
∑
b∈T

nb

}
≤ ‖xT ‖(ω)

‖·‖/p
p
.

In the last line, we have used a block structure associated with the vector z which is inherited from x.
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A.2. Proof of the block weighted Stechkin bound.

Proposition A.1. Let B = (B1, · · · ,BB) be a structure for RN . Let q < p ≤ 2. For any x ∈ RN ,

let x[S] define its quasi-best weigthed s term approximation and define σ̃sx
(ω)
p := ‖x − x[S]‖(ω)

2,p . The
following Stechkin’s bound hold

σs(x)(ω)
p ≤ σ̃(x)(ω)

p ≤
(
s− ‖ω‖2∞

)1/p−1/q ‖x‖(ω)
2/q. (A.1)

Proof. With x[S] the quasi-best weigted s term approximation and p < q ≤ 2 it follows(
σ̃s(x)(ω)

p

)p
=
∑
j /∈S

‖x[Bj ]‖p2ω
2−p
j ≤ max

j /∈S

{
‖x[Bj ]‖p−q2 ωq−pj

}∑
j /∈S

‖x[Bj ]‖q2ω
2−q
j

≤
(

max
j /∈S
‖x[Bj ]‖2ω−1

j

)p−q
‖x‖(ω)

2/q

q
(A.2)

By definition of the set S of the quasi-best approximation of x, we have that s−‖ω‖2∞ ≤ s−ω2
j ≤ ω(S)

Introducing λk :=
(∑

j∈S ω
2
j

)−1

ωk ≤ (s− ‖ω‖2∞)−1ω2
k, we arrive at(

max
j /∈S
‖x[Bj ]‖2ω−1

j

)q
≤
∑
k∈S

λk‖x[Bk]‖q2ω
−q
k ≤

(
s− ‖ω‖2∞

)−1∑
k∈S

ω2−q‖x[Bk]‖q2 ≤
(
s− ‖ω‖2∞

)−1 ‖x‖(ω)
2/q

q
.

Injecting this into (A.2), we finally arrive at(
σ̃s(x)(ω)

p

)p
≤
((
s− ‖ω‖2∞

)−1
) p−q

q ‖x‖(ω)
2/q

p−q
‖x‖(ω)

2/q

q
=
(
s− ‖ω‖2∞

)1−p/q ‖x‖(ω)
2/q

p
. (A.3)

�

A.3. Proof of the weighted block RIP recovery results. We use the following results, known in
traditional compressed sensing [21, Proposition 6.3] and in group sparsity [19, Eq. 40].

Lemma 1. Let B = (B1, · · · ,BB) be a block structure and ω = (ω1, · · · , ωB) with ωi ≥ 1 its associated

weight sequence. Let u,v ∈ RN be two block vectors such that ‖u‖(ω)
0 ≤ s and ‖v‖(ω)

0 ≤ t. In addition,
assume that B-supp(u) ∩ B-supp(v) = ∅. Then

|〈Au, Av〉| ≤ δs+t‖u‖2‖v‖2. (A.4)

Proof. Let S := B-supp(u) ∪ B-supp(v). It follows that ω(S) ≤ s+ t.

|〈Au, Av〉| = |〈(A∗SAS − I) u,v〉| ≤ ‖A∗SAS − I‖2→2‖u‖2,2‖v‖2,2, (A.5)

where we defined as usual as

‖A‖2→2 := sup
x6=0

‖Ax‖2
‖x‖2,2

. (A.6)

Now note that the RIP like bound is obtained as

‖Ax‖22 − ‖x‖22,2 = 〈Au, Au〉 − 〈x,x〉 ≤ ‖A∗SAS − I‖2→2‖x‖22,2.
Hence, by definition of the RIP constant, we have ‖A∗SAS − I‖2→2 ≤ δs+t. �
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