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1 Introduction
Metagenomics is the study of DNA extracted from the microbial communities in an environment,
in comparison to traditional genomics, which studies the nucleic acids from single organisms
(Wooley et al., 2010). In a metagenomic study, a sample is collected directly from the environ-
ment, which can be a gram of soil (Rousk et al., 2010; Bowers et al., 2011), milliliter of ocean
(Williamson et al., 2008), swab from an object (Caporaso et al., 2011), or a sample of the mi-
crobes associated with a host organism, such as humans (Caporaso et al., 2011; Costello et al.,
2009). The microbial content of an environmental sample is termed its “microbiome”. There
are several questions that are of particular importance when the microbiome is being examined.
In particular, who is there, how much of each species is there, and what are they doing overall?
Some of these questions can be addressed using DNA/RNA sequencing followed by homology
and taxonomic classification; however, usually hypotheses focus on answering: which organisms
and/or their functions (e.g., metabolisms) best differentiate multiple phenotypes in a collection of
samples? Consider a collection of gut microbiome samples that were collected from patients with
inflammatory bowel disease (IBD), and a control set that do not have IBD. A natural question to
ask when examining the differences between the gut microbiomes of the two phenotypes is what
organisms or genes can distinguish patients with IBD and healthy controls? Knowing the answers
to such question can be useful in developing a better understanding about a disease, and aid in
developing medicines to target a disease cause.

The question of finding differentiating features, or variables of interest, has been deeply stud-
ied in the machine learning community (see Guyon et al. (2006) and Saeys et al. (2007)), which
is commonly referred to as feature selection. Feature selection is the process of finding a subset
of features that best differentiate between multiple classes, or in our case, phenotypes in a data
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set. The process of selecting features is typically achieved by maximizing some objective func-
tion (e.g., mutual information) in a greedy fashion. The central motivation for feature selection
is to find a smaller subset of features that can be used to differentiate between the multiple phe-
notypes, which in turn can reduce the computational complexity of the classification algorithm
tailored to do such a task. Furthermore, regression could be used instead of classification in the
case of continuous-environmental variables; however, for this chapter, we assume that phenotypes
takes on discrete states, and therefore, classification is the primary focus. Previously, feature selec-
tion has been shown useful to reduce the complexity of metagenome classification (Ditzler et al.,
2012); however, in this article, it’s use is expanded to determine relevance of biological features to
associated phenotypes thus aiding researchers in drawing conclusions from metagenomic data.

Feature selection can be applied to a variety of metagenomic data (e.g., 16S rRNA, whole-
genome shotgun, taxonomic annotations, gene annotations, etc.). In addition to selecting species
which differentiate microbiomes, many studies wish to map DNA/RNA sequences to functional
categories, and address enriched/depleted functions between samples. Depending on the type of
question being asked and the nature of the data, there are a variety of functional databases to
choose from. Table 1 highlights some of the most widely used databases. Large reference sequence
database with a variety of functional descriptions are preferred because they provide detailed anno-
tation of diverse dataset. This raw-labeling of sequences can provide much information, however,
it cannot be used to analyze hierarchical functional structure in a dataset, such as what high-level
functions (e.g., reproduction/cellular transport) are upregulated in my sample?. Instead, sequence
labeling can answer what genes exist in my sample? or which sample is functionally more di-
verse?, because they provide better annotation coverage in the sample than higher-level databases.
However, if it is required to annotate with well-defined vocabularies, which is needed to make
biological inference and associations, then one wishes to use a standardized ontology database.
For example, researchers can use Gene Ontology annotation to examine what functions are en-
riched in the sample compared to others. In some cases, researchers wish to annotate the function
of a gene that appears in multiple organisms rather than just one. In other words, the focus is to
accurately assign homologous genes associated with multiple species, which is especially impor-
tant in metagenomics due to the complex mixture of organisms in a sample. Therefore, ortholo-
gous group databases are useful for annotating homologous function of orthologs. For studying
a microbiome’s metabolism rather than molecular functions, such as asking the questions – what
biological processes are enriched/missing from a diseased microbiome or should photosynthesis
activity be enhanced in surface soil compared to deeper layer soil samples, several metabolic path-
way databases can be used. Finally, protein family databases search for conserved domains and
motifs of protein sequences, and are important when considering the origin and evolution of pro-
teins. For example, protein motifs that characterize pathogenicity may be used as potential targets
for diagnosis and treatment.

Since the diversity of functional databases serves a variety of research questions, it is important
to note that many studies would adopt several databases for annotation. Therefore, the optimal
feature selection technique may depend on the database choice and the nature of taxonomic or
functional data, such as the dimension of feature space, data sparsity, the possible range of fold-
change between samples, etc.
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Table 1: Functional databases mostly used for creating functional profiles.
Large collection of reference sequences

RefSeq Around 18 million proteins from 18k organisms, annotations
are available for a subset of the database, well-annotated
for human sequences.

UniProtKB/Swiss-Prot Manually curated annotations for 500,000+ sequences,
covering 12,930 organisms.

Standardized ontologies
Gene Ontology Well controlled vocabulary, primarily for eukaryotes.

Gene orthologous groups
COG Gene groups classified into 23 functional categories, inferred

from 66 prokaryote and unicellular eukaryote genomes.
KOG Eukaryote version of COG containing 7 eukaryotic genomes.
eggNOG Automated annotation of orthologs in 1133 species.

Metabolism
KEGG Pathway 400+ manually drawn pathways, based on reactions from

multiple species.
BioCyc/Metacyc 2000+ single-organism, experimentally-derived pathways.
SEED Subsystems that describe metabolic machinery with expert

curation.
Protein domains and families

Pfam A large collection of protein families that share the
same domain.

FIGfam Protein families that share domains and pairwise align
for their full length sequences, resulting in less sequences per
family.

This chapter is organized as follows: section 2 highlights the components of a general fea-
ture selection algorithm and how to design such an algorithm. Section 3 presents the benchmark
MetaHit data set, followed by an empirical analysis of feature selection algorithms tested on the
MetaHit data set in section 4. Finally, section 5 draws concluding remarks for feature selection
applied to metagenomic data.

2 Feature Selection
Feature selection can provide a unique insight about the variables that provide discriminating in-
formation about populations, or phenotypes, typically contained in the metadata. This metadata
could be as simple as two populations, such as healthy or unhealthy, or significantly more complex
by containing many different populations within a data sample. It is natural during the analysis
of a biological data set to ask the question: which variables provide the most differentiation be-
tween multiple populations? The answer to such questions can be answered using feature selection
(Guyon and Elisseeff, 2003).

There are several items to consider before applying a feature selection to a (biological) data
set. First, how many features should be selected? Most feature selection algorithms assume that
the end-user must select this parameter, and the quality of the results will most likely be highly
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dependent on the value of this parameter. In many situations, cross validation can be used to
search for an acceptable value. Second, what is the primary objective for features selection? Is it
the goal of the end-user to perform classification, or are they simply looking for the top k features
in the data set? The design of the objective function, J (·), for feature selection can be used to
emphasize, and address these questions.

Let J (·) be a function of the features Xj (for j ∈ {1, . . . , Q}), the label variables Y , and the
current relevant feature set F . Note that the collection of variables (e.g., operational taxonomic
units, Pfams, etc.) is denoted by X . The objective function can be designed in a way, such that it
reflects the task at hand. For example, if a biologist is interested in the top ranking features that
carry the most mutual information between Xj and Y then the objective function should reflect
this goal. In this situation, using a mutual information maximization (MIM) method is sufficient
to achieve this goal (Lewis, 1992). MIM can be implemented as follows: (a) compute I(Xj;Y )
for all j (I(Xj;Y ) is the mutual information between Xj and Y ), (b) rank the mutual informations
in descending order, (c) selection the top k variables with the largest mutual information and place
them in F .

However, many times we seek to classify data based on Y , and in such situations designing
a more complex objective function is required. For example, it may be more advantageous to
select F in such a way that the features contained in F are informative about Y ; however, they are
not redundant (i.e., one or more features provide the same amount of information about Y ). An
example of such an objective function is given by

J (Xj, Y,F) = I(Xj;Y )−
∑
Xs∈F

I(Xj;Xs)

where the first term maximizes the mutual information between the features, Xj , and metadata Y ,
while the second term is penalizing Xj for being redundant with the current relevant feature set
in F . The design of the objective function is quite important to the application to which feature
selection is being applied. There are several works that highlight such results on bioinformatics
data (Saeys et al., 2007), information theory methods (Brown et al., 2012), and general feature
selection techniques (Guyon and Elisseeff, 2003).

A simple algorithm for feature selection is the forward selection search, which is shown in
figure 1. The method begins by initializing the relevant feature set F to the empty set. Then for
k cycles equation (1) is maximized, and the feature that maximizes the expression is added to the
relevant feature set, F , and removed from the feature set, X . The forward selection search is used
with several feature selection objective function in section 4.

3 A Description of the MetaHit Database
As mentioned in section 1, feature selection can allow researchers in metagenomics to interpret
the differentiating features in a data set. The interpretation can be insightful, and allow the re-
searchers to determine the functional differences between multiple phenotypes. As a case study,
let’s examine a metagenome data set collected by Qin et al. (2010), which is widely referred to
as the MetaHit data set. The data are collected from Illumina-based metagenomic sequencing of
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Figure 1: Generic forward feature selection algorithm for a filter-based method.

124 fecal samples of 124 European individuals from Spain and Denmark. The MetaHit data set
represents one of the most comprehensive studies of the human gut microbiome. Among the 124
individuals in the database, 25 are from patients who have inflammatory bowel disease (IBD), and
42 patients are also obese. It is interesting to note that only three of the individuals who have IBD
are also obese. Let us consider two different labeling schemes for the data: IBD and obesity, both
of which are binary prediction problems. The sequences from each individual are functionally
annotated using the Pfam database (Finn et al., 2010), in a recent study that utilized the MetaHit
data set for feature selection on patient age (Lan et al., 2013). There are a total of 6,343 unique
functional features detected in the data set, and figure 2 shows the log10 of the total abundance for
each of the 6,343 functional features over the 124 observations in the data set.

One way to (loosely) access the separability of the IBD and no IBD patients (or obese and not
obese) in the data, is to examine the principal coordinate analysis (PCoA) plots of the patients’
Pfam data (Gower, 1967). Figure 3 shows the PCoA scatter plots of the two sample labeling
schemes using PCoA implemented with the Euclidean distance. From these plots we observe that
there is a significant amount of overlap between the classes for both labeling schemes.

4 Data Analysis
In this section, the classification accuracy and area under the receiver operating characteristic (au-
ROC) curve for the the MetaHit data set are examined when feature selection is applied. The
accuracy is measured using the standard 1–0 loss, and the auROC is interpreted as the probability
of ranking a target data instance higher than a randomly selected non-target data instance (Fawcett,
2006). The IBD/Obese class label is identified as the target for the calculation of the auROC.
The joint-mutual information feature selection algorithm (JMI) is implemented with a forward
selection search, and the naı̈ve Bayes classifier is implemented with a multinomial model. The
FEAST feature selection toolbox implements the JMI algorithm (Brown et al., 2012). All statis-
tics are presented as averages from 10-fold cross validation using stratified sampling. Stratified
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Figure 2: Logarithm of the total abundance of each feature detected by the Pfam database for Qin
et al. (2010)’s human gut microboime data set. The x-axis represent rank of each feature corre-
sponding with the number of detections sorted in descending order. From the plot, it is obvious
that there are few Pfams with a large abundance and many Pfams with a very low abundance count.
For example, there are 2,572 Pfams with 10 or fewer occurrences across the 124 observations.
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Figure 3: Multidimensional scaling of the MetaHit data set with the IBD and Obese labeling of the
samples. There appears to be a significant amount of overlap between the controls and targets for
both prediction problems.
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Table 2: Area under the ROC (auROC) curves and classification error for a naı̈ve Bayes classifier
tested using 10-fold cross validation.

auROC (IBD) Error (IBD) auROC (Obese) Error (Obese)
10 0.706 0.233 0.640 0.395
15 0.624 0.290 0.672 0.352
25 0.616 0.292 0.660 0.403
50 0.750 0.223 0.649 0.422
100 0.660 0.249 0.659 0.397
200 0.654 0.257 0.643 0.389
500 0.635 0.277 0.641 0.378
All 0.665 0.238 0.622 0.240

sampling assures that instances from each class will be in each cross-validation data set. Note that
completely random cross-validation data set partitions do not guarantee this property.

The auROC and loss for the multinomial naı̈ve Bayes classifier are measured using the two
labeling schemes described in section 3 (i.e., IBD and obese). Table 2 contains the classification
assessments from the different labeling schemes as well as a variation in the number of features that
are selected via JMI. From table 2, it is clear that feature selection can have a significant outcome
in the classification results. This is best shown in figure 4 which shows the number of features
selected by the MIM algorithm vs. the loss (figure 4(b)), and the auROC (figure 4(a)). Note that
these results are generated using the mutual information maximization approach; however, similar
results/trends are observed for other feature selection methods.

Figure 5(a) presents a visualization of the MetaHit data set before and after MIM feature se-
lection is applied. The features are sorted from high to low in terms of overall abundance, and the
patients are represented such that samples 1 through 99 do not have IBD, and samples 99 through
124 have IBD. Clearly, this shows a large amount of sparsity that is inherent in the data, which
would also be evident if taxonomic abundances were used over Pfams. Figure 5(b) shows that
most of the features being selected by MIM are relatively abundant features; however, simply be-
cause a feature is abundant does not imply that the feature is relevant. This can be observed near
the 44th feature in figure 5(b). Note that the features in figure 5(b) are order by the time the were
selected by the forward search.

The top Pfams that maximize the mutual information for the MetaHit data set are shown in
table 3. It is known in IBD patients, the expression of ABC transporter protein (PF00005, the
first feature MIM selected for classifying IBD vs. no IBD samples) is decreased which limits
the protection against various luminal threats (Deuring et al., 2011). The feature selection for
IBD also identified glycosyl transferase (PF00535), whose alternation is hypothesized to result in
recruitment of bacteria to the gut mucosa and increased inflammation (Campbell et al., 2001). And
the genotype of acetyltransferase (PF00583) plays an important role in the pathogenesis of IBD,
which is useful in the diagnostics and treatment of IBD (Baranska et al., 2011). It is not surprising
that ABC transporter (PF00005) is also selected for obesity, which is known to mediate fatty acid
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Figure 4: The effect of the number of features selected by the MIM algorithm vs. the loss (left),
and the auROC (right). The number of features being selected has a larger effect on the auROC
(i.e., detection of target population examples), than the accuracy of the system. Similar results are
observed with JMI and other feature selection methods.

(a) no feature selection (b) feature selection

Figure 5: Visualization of the abundance matrix (on a log10 scale) (a) before and, (b) after MIM
feature selection. The x-axis represents a feature and y-axis represents samples. Sample 1 through
99 do not have IBD, and samples 99 through 124 have IBD. (b) contains the top-50 features rel-
evant to the 124 datasets. Differences between the two classes cannot be visualized, however,
classification auROCs are 10-15% above chance.

transport that is associated with obesity and insulin resistant states (Ashrafi, 2007), and ATPases
(PF02518) that catalyze dephosphorylation reactions to release energy.
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Table 3: List of the “top” Pfams as selected by the MIM feature selection algorithm. Note that
redundancy terms are not accounted for in the objective of MIM. Hence the feature below are the
ones that provide the largest amounts of mutual information. The ID in parenthesis is the Pfam
accession humber.

IBD features Obese features
feature 1 ABC transporter (PF00005) ABC transporter (PF00005)
feature 2 Phage integrase family (PF00589) MatE (PF01554)
feature 3 Glycosyl transferase family 2 (PF00535) TonB dependent receptor (PF00593)
feature 4 Acetyltransferase (GNAT) family Histidine kinase-, DNA gyrase B-,

(PF00583) and HSP90-like ATPase (PF02518)
feature 5 Helix-turn-helix (PF01381) Response regulator receiver domain

(PF00072)

5 Conclusion
This chapter has presented a broad overview about how feature selection algorithms can be used to
facilitate and interpret data in the field of metagenomics. Recall that metagenomic abundance data
can be of very large dimension (e.g., MetaHit), and feature selection reduces the dimensionality
of the space to allow for a quick interoperation of the data. Furthermore, feature selection is also
useful for classification because it allows us to remove potentially irrelevant features from the data
set, which allows the classier to focus on learning from the relevant information rather than attempt
to decipher what is or is not relevant.
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