
A Generalized Class of Hard Thresholding
Algorithms for Sparse Signal Recovery

Jean-Luc Bouchot

Abstract We introduce a whole family of hard thresholding algorithms for the re-
covery of sparse signals x ∈ CN from a limited number of linear measurements
y = Ax ∈Cm, with m� N. Our results generalize previous ones on hard threshold-
ing pursuit algorithms. We show that uniform recovery of all s-sparse vectors x can
be achieved under a certain restricted isometry condition. While these conditions
might be unrealistic in some cases, it is shown that with high probability, our algo-
rithms select a correct set of indices at each iteration, as long as the active support is
smaller than the actual support of the vector to be recovered, with a proviso on the
shape of the vector. Our theoretical findings are illustrated by numerical examples.

1 Compressive Sensing and Sparse Signal Recovery

This paper is concerned with the standard compressive sensing problem, i.e., we
analyze the reconstruction of sparse signals x ∈ CN based only on a few number
of (linear) measurements y ∈ Cm where m� N. It is known from the compressive
sensing literature that recovery of s-sparse signals x is ensured when the sensing
(or measurement) matrix is random (Gaussian or sub-Gaussian for instance) and
when the number of measurements scales linearly with the sparsity of the signal up
to a log factor. Known methods arise mainly from optimization theory such as the
`1 minimization [YZ11, CR05], reweighted norm minimizations [CWB08, WN10],
primal-dual optimization [CP11], or from iterative solvers (see for instance [Tro04,
TG07, BD09, NT09]).

We investigate in particular some variations of the Hard Thresholding Pursuit
(HTP) algorithm [Fou11], an iterative thresholding based method, and its graded
approach, a recent variation that does not require prior knowledge of the spar-

Jean-Luc Bouchot,
Department of Mathematics, Drexel University, 3141 Chestnut Street, Philadelphia, e-mail: jean-
luc.bouchot@drexel.edu.

1

2 Jean-Luc Bouchot

sity [BFH13]. We analyze the reconstruction abilities of these algorithms in both
idealized and realistic settings. In particular we introduce a generalization that im-
prove the speed performance of (GHTP).

The idealized setting is characterized by the fact that the signal to be recovered
x is exactly s-sparse and that the measurements occur in an error-free manner. In
this case exact recovery is ensured by all such algorithms provided that a certain
restricted isometry condition (RIC) is met by the sensing matrix [CT05, Fou12]. In
comparison, we may consider a more realistic setting in which the vector x may
suffer a sparsity defect and the measurements through the matrix A may be inaccu-
rate. In this case, we have y = Ax+e where e ∈Cm represents the error induced by
the measurement process. The sparsity defect can be integrated into this error term
by considering x = xS + xS where xS corresponds to the s most important compo-
nents (i.e. the largest absolute entries) of x. Thus we may incorporate the remain-
ing components into the noise as y = Ax+ e = AxS +

(
AxS + e

)
= AxS + e′ where

e′ = AxS + e ∈ Cm contains both the sparsity defect and the measurement noise.
The remainder of this article is organized as follows. We start in section 2 by

reviewing some previous work regarding the (HTP) and (GHTP) algorithms (sub-
section 2.1). This leads to introduce a family of algorithms that generalizes the two
previous ones in subsection 2.2. These algorithms are studied theoretically in the
following sections in both uniform (see Section 3) and nonuniform settings (Sec-
tion 4). Finally, section 5 compares and validates numerically our findings.

Throughout this paper we use the following notations:

• x∗ represents the nonincreasing rearrangement of a vector x:

x∗1 ≥ x∗2 ≥ ·· · ≥ x∗N ≥ 0

and there exists a permutation π of {1, . . . ,N} such that x∗j = |xπ(j)|.
• S is the support of an s-sparse vector x or the set of indices of its s largest absolute

entries.
• xT corresponds to the vector x either restricted to the set T or such that xT i = xi

for i ∈ T and 0 elsewhere, depending on the context.
• The complementary of a set T in {1, . . . ,N} is denoted by T
• d·e and b·c denote respectively the ceil and floor functions.
• δs corresponds to the restricted isometry constant of order s of a given matrix A

and is defined as the smallest δ such that

(1−δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1+δ)‖x‖2
2

holds for any s-sparse vector x.

Generalized Hard Thresholding Algorithms 3

2 (HTP), (GHTP) and their Generalizations

2.1 Previous Results

The Hard Thresholding Pursuit [Fou11] and its graded variant [BFH13] can be sum-
marized by the following steps:

Sn :=
{

indices of k largest entries of
∣∣xn−1 +A∗(y−Axn−1)

∣∣} , (GHTP1)
xn := argmin{‖y−Az‖2,supp(z)⊂ Sn}, (GHTP2)

with k = s for (HTP) and k = n for (GHTP).
It was shown that robust and stable recovery is achieved under some RIC:

Theorem 1 If the restricted isometry constant of the matrix A ∈ Cm×N obeys

δ3s ≤
1
3

for (HTP), and δ9s ≤
1
3

for (GHTP),

then the sequences (xn) produced by (HTP) or (GHTP) with y = Ax+ e ∈ Cm for
some s-sparse x ∈ CN and some e ∈ Cm with ‖e‖2 ≤ γ x∗s satisfy

‖x−xn‖2 ≤ d‖e‖2, n≤ cs.

The constants c ≤ 3 for (HTP) and c ≤ 4 for (GHTP), d ≤ 2.45, and γ ≥ 0.079
depend only on δ3s or δ9s.

It is worth mentioning that reshuffling the index set in the (GHTP) algorithm
adds robustness to (GHTP) (as seen in the numerical experiments in section 5) over
Orthogonal Matching Pursuit (OMP) at the cost that its implementation cannot be
done using QR updates.

2.2 Generalizations

We investigate here some generalizations of the Graded Hard Thresholding Pursuit
that improve the speed of the algorithm while only slightly deteriorating its recon-
struction capability. In order to speed up the convergence we need to lower the
number of iterations. Following an index selection process similar to the (HTP) and
(GHTP) algorithms, we introduce (f -HTP) that relies on a different number of in-
dices selected per iteration (note that Generalized HTP would be a confusing name
with regards to the (GHTP) algorithm).

Let f : N→ N be a non-decreasing function such that there exists n0 ≥ 0 with
f (n)≥ s for any n≥ n0. The (f -HTP) algorithm is defined by the following sequence
of operations:

4 Jean-Luc Bouchot

Sn :=
{

indices of f (n) largest entries of
∣∣xn−1 +A∗(y−Axn−1)

∣∣} , (f -HTP1)
xn := argmin{‖y−Az‖2,supp(z)⊂ Sn}. (f -HTP2)

Observe that the constant function f (n) = s yields the original (HTP) algorithm
while f (n) = n corresponds to (GHTP). Particularly interesting in terms of speed
and number of iterations is the case f (n) = 2n−1 which shall be refer to as (GHTP2).

2.3 First Results

We first provide some preliminary results as we did for the original graded algorithm
(GHTP) in [BFH13]. We show that a similar geometric decay of the error at each
iteration ‖x− xn‖2 holds for the generalization (f -HTP), see Equation (3). It also
ensures that a certain number of indices of largest entries may be included in the
support after a given number of iterations (see Lemma 1). These results will allow us
to prove the main result for uniform recovery (as stated in Theorem 2) by induction.

2.3.1 Geometric Decay

In the remainder of this article we will define n0 as the smallest integer such that
f (n)≥ s, for all n≥ n0. In particular, n0 = 0 for (HTP), s for (GHTP) and dlog2(s)e
for (GHTP2). Using the results from [Fou11, BFH13] we have the following esti-
mates, for n≥ n0:

∥∥xn+1−x
∥∥

2 ≤
√

1
1−δ 2

f (n+1)+s

∥∥∥(xn+1−x
)

Sn+1

∥∥∥
2

+
1

1−δ f (n+1)+s
‖(A∗e)Sn+1‖2 , (1)∥∥∥(xn+1−x

)
Sn+1

∥∥∥
2
≤
√

2δ f (n)+ f (n+1)+s ‖xn−x‖+
√

2‖(A∗e)S∆Sn+1‖2 . (2)

Combining these two estimates yields the geometric decay

∥∥xn+1−x
∥∥

2 ≤

√√√√2δ 2
f (n)+ f (n+1)+s

1−δ 2
f (n+1)+s

‖xn−x‖2 + τ f (n+1)+s ‖e‖2 (3)

with τ f (n+1)+s =
√

2

(1−δ f (n+1)+s)
2 +

√
1+δ f (n+1)+s

1−δ f (n+1)+s
. These results are the same as in

our previous paper up to the RIC that needs to be adapted. In a more concise way
we can write, where the multiplicative coefficient can be written depending only on
δ2 f (n+1)+s:

Generalized Hard Thresholding Algorithms 5∥∥xn+1−x
∥∥

2 ≤ ρ2 f (n+1)+s ‖xn−x‖2 + τ f (n+1)+s ‖e‖2

with ρ2 f (n+1)+s =

√
2δ 2

2 f (n+1)+s

1−δ 2
2 f (n+1)+s

.

2.3.2 Preparatory Lemma

As for the original (GHTP) algorithm [BFH13] we can show that, if the p largest
absolute entries are contained in the support at iteration n, then k further iterations
of (f -HTP) are sufficient to recover the q following largest entries, as stated in the
following lemma.

Lemma 1 Let x ∈ CN be s-sparse and let (Sn) be the sequence of index sets pro-
duced by (f -HTP) with y = Ax+e for some e ∈Cm. For integers p≥ 0 and n≥ n0,
suppose that Sn contains the indices of p largest absolute entries of x. Then, for
integers k,q ≥ 1, Sn+k contains the indices of p+ q largest absolute entries of x,
provided

x∗p+q > ρ
k
s+2 f (n+k)‖x

∗
{p+1,...,s}‖2 +κn+k−1‖e‖2, (4)

with the constants ρn+k−1 as defined above and κn+k−1 =

√
2δs+ f (n+k−1)

√
1−δs+ f (n−1)

1−δs+ f (n−2)
+

√
2

1−δs+ f (n+1)

δs+ f (n+k−1)
1−ρn+k−1

+
√

2
√

1+δ2 depending only on the restricted isometry con-

stant δs+ f (n+k).

Remark 1 The proof of Lemma 1 is not provided here. It follows directly from the
proof of Lemma 3 and 4 from [BFH13] with changes imposed on the current iter-
ation number and the number of indices selected, which is replaced by f (n) every-
where.

Remark 2 Lemma 1 is not ideal in the sense that the number of iterations needed
for the recovery of the next q largest entries, does not depend on the actual index
selection method and whether we select exponentially many new indices at each
iteration or just a linear number of new candidates. This leads to overestimate the
number of iterations needed. As we see in the following section it creates RIC that
are not always realistic, as they yield RIP of order up to ss (in the worst, but fastest,
scenario). It shows however, that there exist conditions under which the convergence
of the algorithm is guaranteed. We also see that in particular cases (namely when
dealing with power or flat vectors) the conditions from Theorem 2 can be drastically
improved. Moreover, as suggested by the numerical experiments in Section 5, these
results are only a rough overestimation of the actual number of iterations needed.

6 Jean-Luc Bouchot

3 Uniform Recovery via (f -HTP)

3.1 General Results

This section is dedicated to the problem of uniform recovery of all s-sparse vectors
x given a certain sensing matrix. While this gives some ideas of why the (f -HTP)
algorithms may converge, our proof yields, for certain choices of f , unrealistic and
unapplicable conditions. Such considerations are detailed in Table 1.

Theorem 2 If the restricted isometry constant of the matrix A ∈ Cm×N obeys

δ2 f (n)+n0 ≤
1
3
,

then the sequence (xn) produced by (f -HTP) with y = Ax+ e ∈ Cm for some s-
sparse x ∈ CN and some e ∈ Cm with ‖e‖2 ≤ γ x∗s satisfies

‖x−xn‖2 ≤ d‖e‖2, n≤ cs.

The constants c≤ 4, d ≤ 2.45, and γ ≥ 0.079 depend only on δs+2 f (n).

Table 1 Examples of RIC that a sensing matrix should fulfil for uniform recovery, according to
Theorem 2

f s n 2n n(n+1)/2 2n−1

RIC 3s1 9s s/2+16s
√

2s+8s2 s+ ss

Name (HTP) (GHTP) (GHTP2)

This theorem generalizes the one obtained first for (HTP) and (GHTP) to more
general index selection schemes. It is purely an adaptation of our previous results
and does not depend on the index selection function f . Therefore, as stated above it
generates unrealistic restricted isometry conditions. For instance, when considering
the case of f (n) = 2n−1 we would need to ensure an RIC of order Ω(ss). Table 1
gives some examples of RIC for different choices of f .

While the two last conditions are unrealistic, the first cases still yield reasonable
RIC. For instance the case f = 2n yields an RIC at the order 16s which is still in
a comparable range as for (OMP) (see [Zha11] for a stable recovery under RIC of
order 13s).

Fortunately these strong conditions can be improved in the particular cases of
power vector or almost flat vectors. The recovery of power vectors is analyzed in
the following section where we show in the case of (GHTP2) that the matrix only
needs to obey an RIC of order Ω(spolylog(s)). (Other examples are given in Table 2.)

1 This result actually coincides with the one from the original paper about (HTP) [Fou11]

Generalized Hard Thresholding Algorithms 7

3.2 The Case of Power Vectors

We investigate the convergence of the family of generalized algorithms when facing
particular power vectors. Our results rely on the following lemma used for decom-
posing the support:

Lemma 2 Any set S ⊆ {1, . . . ,N} of size s ≤ N can be decomposed in r subsets
S1, . . . ,Sr such that

1. r = blog2(s)c+1
2. S =

⋃r
i=1 Si

3. Si∩S j =∅, for j 6= i
4. |Si| ≤

⌈
s/2i

⌉
Proof. We show this result by induction on the set size s. For s = 1, S1 = S fulfills
all the criteria. Assume now that Lemma 2 holds for all 1 ≤ n ≤ s− 1. Without
loss of generality, we can consider the set S = {1, . . . ,s}. It holds S = S1 ∪T with
S1 = {1, · · · ,ds/2e} and T = S\S1. And we have |T |= s−ds/2e< s and therefore,
applying the induction hypothesis yields T =

⋃rT
j=1 Tj with rT = blog2(|T |)c+ 1

and |Tj| ≤
⌈
|T |/2 j

⌉
. We now define Si := Ti−1 for i > 1 and therefore the partition

S1, . . . ,Sr fulfils the three first criteria of the lemma. To verify the last statement of
the lemma we consider two separated cases:

If s is even, then there exists a k ∈ N such that s = 2k and |S1| = |T | = k. The
induction hypothesis implies, for j ≥ 1

|Tj| ≤
⌈
k/2 j⌉ and |S j+1| ≤

⌈
s/2 j+1⌉

which proves the last point of the lemma.
If s is odd, then there exists a k ∈ N such that s = 2k+ 1 and |S1| = k+ 1 and

|T |= k. The induction hypothesis implies, for j ≥ 1

|Tj| ≤
⌈
k/2 j⌉ and |S j+1| ≤

⌈
s/2 j+1−1/2 j+1⌉≤ ⌈s/2 j+1⌉

which finishes the proof of the lemma. ut

Consider vectors x such that for all 1≤ j≤ s,x∗j = 1/ jα for some α > 1/2 (first,
other cases will be considered later). We have

‖x∗{p+1,··· ,s}‖
2
2 =

1
(p+1)2α

+ · · ·+ 1
s2α

≤
∫ s

p

1
x2α

dx =
1

2α−1

(
1

p2α−1 −
1

s2α−1

)
≤ 1

2α−1
1

p2α−1 .

With this, it is sufficient to find k and q such that

1

(p+q)2α
> ρ

2k 1
2α−1

1
p2α−1 ,

8 Jean-Luc Bouchot

for condition (4) from Lemma 1 to be valid.
This condition is equivalent to

k >
1

log(1/ρ2)
log

(
p

2α−1

(
1+

q
p

)2α
)
.

In conclusion, {1, · · · , p} ⊂ Sn⇒{1, · · · , p+q} ⊂ Sn+k. holds provided that

k >
2α log

(
p
(

1+ q
p

))
log(1/ρ2)

− log(2α−1)
log(1/ρ2)

If we now consider r subsets S1, · · · ,Sr, r = blog2(s)c+ 1 as suggested by
Lemma 2, then we can successively apply Lemma 1 to each r subsets Si. Defin-
ing S0 = ∅, qi = |Si|, for i ≥ 0, ki the number of iterations needed to add subset
Si, using k0 = n0, and pi = ∑

i−1
j=1 q j, we finally get that the number of iterations for

uniform recovery is bounded by

n≤
r

∑
i=0

ki ≤
2α

log(1/ρ2)

r

∑
i=1

log
(

pi

(
1+

qi

pi

))
− r

log(2α−1)
log(1/ρ2)

+n0

≤ 2α

log(1/ρ2)

r

∑
i=1

log

(
i

∑
j=1

q j

)
− r

log(2α−1)
log(1/ρ2)

+n0

≤ 2α

log(1/ρ2)

r

∑
i=1

log

(
i

∑
j=1

(
s/2 j +1

))
− r

log(2α−1)
log(1/ρ2)

+n0 (5)

≤ 2α

log(1/ρ2)

r

∑
i=1

log

(
s

i

∑
j=1

1/2 j + i

)
− r

log(2α−1)
log(1/ρ2)

+n0

≤ 2α

log(1/ρ2)

r

∑
i=1

log(2s)− r
log(2α−1)
log(1/ρ2)

+n0,

where we have used the fact that q j ≤
⌈
s/2 j

⌉
≤ s/2 j +1 in inequality (5). With such

a partition we have that r = blog2(s)c+1≤ log2(s)+1 and hence n can be bounded
by

n≤ (log2(s)+1)
(

log(2s)
2α

log(1/ρ2)
− log(2α−1)

log(1/ρ2)

)
+n0.

Using this, we only need to ensure the RIC to the order 2n which is Ω(s · slog(s))
when using the (GHTP2). This is not yet acceptable for real-world applications but
much less critical then what Theorem 2 suggests. Moreover, it corresponds also to
the worst case scenario for (f -HTP) algorithms.

If we now consider the case α = 1/2, a similar analysis yields

‖x∗{p+1,...,s}‖
2
2 ≤

∫ s

p

1
x

dx = log(s− p),

Generalized Hard Thresholding Algorithms 9

and condition (4) reads 1
p+q > ρ2k log(s− p). Therefore, Lemma 1 holds for

k >
log(log(s))+ log(p+q)

log(1/ρ2)
.

Using a partition as given in Lemma 2 gives a sufficient number of iterations

n =
r

∑
i=0

ki =
r

∑
i=1

log(log(s))+ log(∑i
j=1 q j)

log(1/ρ2)
+n0

≤ (log2(s)+1)
log(log(s))+ log(2s)

log(1/ρ2)
+n0.

Again, in this case, the RIC has to be valid at the order Ω(s ·spolylog(s)) for (GHTP2).
The case 0 < α < 1/2 can be treated in the exact same way by approximating

the 2-norm with an integral. This yields, using the same support decomposition,

n≤ (log2(s)+1)
(
(1−2α) log(s)

log(1/ρ2)
+

2α log(2s)
log(1/ρ2)

− log(1−2α)

log(1/ρ2)

)
.

Consider an almost flat s-sparse vector x such that there exists an ε ≥ 0 with
1− ε ≤ x∗j ≤ 1, for j = 1, . . . ,s (this corresponds to α = 0). In this case, we have
that

(1− ε)2 (s− p)≤ ‖x{p+1,··· ,s}∗‖2
2 ≤ s− p

Hence condition (4) now reads 1 > ρ2k s−p
1−ε

and is fulfilled whenever

k >
log
(s−p

1−ε

)
log(1/ρ2)

.

Using the decomposition given in Lemma 2, we get that

n≤ log(s/(1− ε))2

log(1/ρ2)
+n0

iterations are sufficient to recover the signal x. This gives a RIC in the order of
Ω(slog(s)) when considering (GHTP2) for the power vector case. All of the previous
results can be summarized in the following corollary:

Corollary 1 Let x be an s-sparse vector such that its non-decreasing rearrangement
can be written as x∗j = 1/ jα , for all 1 ≤ j ≤ s, for some α ≥ 0 or 1− ε ≤ x∗j ≤ 1,
for some ε ≥ 0. Then for any matrix A ∈ Cm×N , x can be recovered from y = Ax in
at most n = C polylog(s)

log(1/ρ2)
+n0 iterations of (f -HTP) provided that the RIP conditions

are satisfied at the order Ω(s+2 f (polylog(s))). The constant C and the polynomial
involved depend only on α and ρ

As a consequence, (GHTP2) requires a RIC in the order of Ω(s+2slog(s)). Simi-
larly, considering f (n) = 2n yields a RIC in the order of Ω(3s+polylog(s)) which

10 Jean-Luc Bouchot

is tractable and still provides a strong speed improvement over the original (GHTP)
(even if the complexity remains in the same order, the constant in front is much
lower). Some examples are summarized in Table 2.

Table 2 Examples of RIC-orders that the measurement matrix needs to obey for different (f -HTP)
algorithms (these are just order of magnitude)

f s n 2n n(n+1)/2 2n−1

RIC 3s 3s+4Cpolylog(s) 3s+8Cpolylog(s) 3s+4Cpolylog2(s) s+2spolylog(s)

Name (HTP) (GHTP) (GHTP2)

4 Nonuniform Recovery via (f -HTP)

We consider here the problem of recovering a particular fixed vector x instead of
recovering any vector for a given matrix A.

4.1 Useful Inequalities

We recall here some results regarding the tail distribution of some random variables
and the probability distribution of the smallest singular value of a subgaussian ma-
trix [FR13]. These results play an important role in proving the nonuniform recovery
of vectors via (f -HTP).

Lemma 3 ([FR13]) Let A∈Rm×N be a subgaussian matrix, the following inequal-
ities hold

P(‖A∗SAS− I‖2→2 > δ)≤ 2exp(−c′δ 2m) (6)

P(|〈a`,v〉|> t‖v‖2)≤ 4exp
(
−c′′t2m

)
, (7)

where c′′ depends only on the distribution.

4.2 Recovery

Following [BFH13, Prop.9], we can see that with high probability the algorithms
make no mistakes when selecting the indices. This statement is true while the size
of the index set selected at a given iteration is strictly smaller than the actual sparsity
of the signal anf under a condition on the shape of the vector to be recovered. This
result is summarized in the following proposition:

Generalized Hard Thresholding Algorithms 11

Proposition 1 Let λ ≥ 1 and let x ∈ CN be an s-sparse vector such that x∗1 ≤ λx∗s .
If A ∈ Rm×N is a sub-Gaussian matrix with

m≥Cs ln(N) ,

then with high probability (≥ 1−2N−c) and for any error vector e ∈ Cm such that
‖e‖2 ≤ γx∗s the sequences Sn and xn produced by (f -HTP) with y = Ax+ e satisfy,
at iteration n0−1 (where n0 denotes the smallest integer such that f (n)≥ s):

Sn0−1 ⊂ S (8)

where the constant γ depends only on λ and the constant C on λ and c.

Remark 3 It is worth mentioning that the proof of this Proposition does not apply
to the (HTP) algorithm. Indeed, the result holds only while the number of indices is
strictly smaller than the actual sparsity. This condition is never met with f (n) = s.

Proof. The proof follows from our previous results. We show that, with high prob-
ability, Sn ⊆ S for all 1 ≤ n ≤ n0−1. For this we need to show that χn > ζn where
we define

χn :=
[(

xn−1 +A∗(y−Axn−1)
)

S

]∗
f (n) ,

ζn :=
[(

xn−1 +A∗(y−Axn−1)
)

S

]∗
1 .

Literaly, with zn := xn−A∗ (y−Axn) χn is the f (n)th largest absolute entry of zn

on the support S of x while ζn is the largest absolute entry of zn on its complement.
χn > ζn for all 1≤ n≤ n0−1 is true with failure probability P. And we have

P := P(∃n ∈ {1, . . . ,n0−1} : ζn ≥ χn and (χn−1 > ζn−1, . . . ,χ1 > ζ1)) (9)

P≤ P
(
‖A∗S∪{`}AS∪{`}− I‖2→2 > δ for some ` ∈ S

)
(10)

+
n0−1

∑
n=1

P
(

ζn ≥ χn,(χn−1 > ζn−1, . . . ,χ1 > ζ1),(‖A∗S∪{`}AS∪{`}− I‖2→2 ≤ δ for all ` ∈ S)
)
,

(11)

Defining T s− f (n−1) as the set of indices corresponding to the s− f (n−1) smallest
absolute entries of zn on S we can easily verify that

χn ≥
1√

s− f (n−1)

(
‖xT s− f (n−1)‖2−δ‖x−xn−1‖2−

√
1+δ‖e‖2

)
.

And similarly we have

ζn ≤max
`∈S
|〈a`,A(x−xn−1)〉|+

√
1+δ‖e‖2.

12 Jean-Luc Bouchot

Finally with P′(E) denoting the probability of an event E intersected with the
event

(
(χn−1 > ζn−1, . . . ,χ1 > ζ1),(‖A∗S∪{`}AS∪{`}− I‖2→2 ≤ δ for all ` ∈ S)

)
in-

equality (11) reads

P′ (ζn ≥ χn)

≤ P′
(

max
`∈S
|〈a`,A(x−xn−1)〉|> 1√

s− f (n−1)

(
‖xT s− f (n−1)‖2−δ‖x−xn−1‖2

)
−2
√

1+δ‖e‖2

)

≤ P′
(

max
`∈S

∣∣〈a`,A(x−xn−1)〉∣∣> δ√
s− f (n−1)

‖x−xn−1‖2

)
(12)

where the last inequality follows from the fact that:

1√
s− f (n−1)

(‖xT s− f (n−1)‖2−δ‖x−xn−1‖2)−2
√

1+δ‖e‖2

≥ δ√
s− f (n−1)

‖x−xn−1‖2 (13)

whenever

1−2
√

1+δγ ≥ 2δ

(
λ√

1−δ 2
+

√
1+δ

1−δ
γ

)
. (14)

Indeed, inequality (13) is equivalent to

1√
s− f (n−1)

‖xT s− f (n−1)‖2−2
√

1+δ‖e‖2 ≥
2δ√

s− f (n−1)
‖x−xn−1‖2 (15)

The left-hand side can be estimated by

x∗s −2
√

1+δγx∗s = x∗s
(

1−2
√

1+δ

)
and the right-hand side is estimated by

‖x−xn−1‖2 ≤
1√

1−δ 2
‖xSn−1‖2 +

1
1−δ

‖(A∗e)Sn−1 ‖2, using estimate (1),

≤
√

s− f (n−1)√
1−δ 2

x∗1 +

√
1+δ

1−δ
‖e‖2,

≤
√

s− f (n−1)√
1−δ 2

λx∗s +

√
1+δ

1−δ
γx∗s ,

≤
√

s− f (n−1)

(
λ√

1−δ 2
+

√
1+δ

1−δ
γ

)
x∗s .

Generalized Hard Thresholding Algorithms 13

Hence condition (14) is verified by choosing δ then γ (depending on λ) small
enough.

Finally using the fact that ‖A
(
x−xn−1

)
‖2 ≤

√
1+δ‖x− xn−1‖2, the failure

probability from Equation (12), can be further approximated by

P′ (ζn > χn)≤ P′
(

max
`∈S

∣∣〈a`,A(x−xn−1)〉∣∣> δ√
1+δ

‖A
(
x−xn−1)‖2

)
(16)

Combining these results with Equations (7) and (6), we finally get that

P≤ 2(N− s)exp
(
−c′δ 2m

)
+4(N− s)(n0−1)exp

(
− c′′δ 2m
(1+δ)s

)
.

This leads to

P≤ 2N2 exp
(
−

c′′′
δ

m
s

)
with an appropriate choice of c′′′

δ
. ut

4.3 Hybrid Algorithms

We may ask ourselves whether Proposition 1 is of interest or not as it does not lead
to the complete recovery of x. However, Proposition 1 ensures us that we can create
hybrid algorithm with the (f -HTP) framework where we can make large steps first
until a certain criterion is met, and then adaptively reduce the increase of the index
set’s size until it gets to the sparsity of the signal. Algorithm 1 gives an example of
such an hybrid algorithm.

Data: A matrix A ∈ Rm×N , a measurement vector y ∈ Cm, a switching step
n ∈ N,n≤ n0

Result: an s sparse signal x
Set S0 =∅, x0 = 0, nIter = 0;
while nIter ≤ n do

Do an iteration of (GHTP2);
nIter = nIter+1;

end
while Convergence is not done do

Do an iteration of (GHTP);
nIter = nIter+1;

end
Algorithm 1: Example of an hybrid algorithm for sparse signal recovery

The only important thing to be careful of is that we stay below the sparsity when
we start reducing the number of indices added per at each iteration. Moreover, even
if Proposition 1 does not ensure convergence of the algorithm until the very last
important index, it was shown in [BFH13] that (GHTP) does converge in s iterations.

14 Jean-Luc Bouchot

This ensures us that such an hybrid algorithm can be used for nonuniform recovery
and that it converges in a number of iterations n≤ s.

5 Numerical Results

This section validates our theoretical findings by some numerical experiments. Note
that all the necessary Matlab files can be found on the author’s webpage 2. Validation
is being made with some (f -HTP) examples compared to the (HTP), (GHTP) and
(OMP) algorithms. The following particular index selection functions f are used:

• f (n) = s: (HTP),
• f (n) = n: (GHTP),
• f (n) = 2n: (GHTP2n),
• f (n) = n(n+1)/2: (GHTPn2),
• f (n) = 2n−1: (GHTP2).

Moreover we will denote by (Hyb1) and (Hyb2) the two algorithms such that the
functions f are defined respectively by

f (n) =
{

2n−1 , if n < n0,
2n0−2 +n−n0 +1 , otherwise,

(Hyb1)

f (n) =
{

n(n−1)/2 , if n < n0,
(n0−1)n0/2+n−n0 +1 , otherwise. (Hyb2)

The algorithms were tested using 100 randomly generated Gaussian matrices
A ∈R200×1000 each of which were used to recover 10 vectors with randomly gener-
ated supports (which represents a total of 1000 random tests for each vector kind and
sparsity level). The tests were carried out on three different kinds of vectors to assess
the dependence of the algorithms on the decay of the vector x; ‘flat’ vectors with
x∗j = 1 for j ∈ {1, . . . ,s}, ‘linear’ vectors with x∗j = (s+1− j)/s for j ∈ {1, . . . ,s},
and Gaussian vectors whose s nonzero entries are independent standard normal ran-
dom variables.

5.1 Successful Recovery and Area of Convergence

We first want to assess the recovery ability of our algorithms by recording the fre-
quency of success as a function of the sparsity. As stopping criterion here we have
used the natural one for (HTP) (Sn = Sn−1) and [S⊆ Sn or ‖x−xn‖2/‖x‖2 < 10−4]

2 http://www.math.drexel.edu/˜jb3455/publi.html

Generalized Hard Thresholding Algorithms 15

for (f -HTP) and (OMP)3. A recovered x is recorded as a success whenever the rel-
ative error is smaller than 10−4.

As expected, the steaper the index selection function the harder it is for the al-
gorithm to converge. As a consequence (see Fig. 1) (GHTP2) performs the worst.
However, for reasonable functions f (up to quadratic functions) the range of con-
vergence of the algorithm is similar to the original one. Moreover, due to the reshuf-
fling of the index set, our family of functions tend to perform better than a classical
(OMP).

5.2 Number of Iterations for Successful Recovery

One important reason for introducing this generalized family of functions is to lower
the number of iterations needed for convergence. Indeed, while the reshuffling of
the active set can be seen as an advantage in terms of recovery capability of our
algorithms, it takes away any chance of faster implementation, using for instance
QR updates in the inner loop. The following set of graphs (depicted in Figure 2)
analyzes the maximum number of iterations needed for recovery.

Three things are worth mentioning. First, as already stated in Remark 2, the max-
imum number of iterations suggested by Theorem 2 is a very rough overestimation
of the actual number of iterations. This is mainly due to the fact that the proof of
Theorem 2 relies on the geometric decay of ‖xn− x‖2 that can only be proven for
n ≥ n0. However, as we describe in the next Section, the algorithm picks correct
indices much earlier than the nth

0 iteration. This also shows that the proof Theorem 2
is not optimal as clearly, for most of these algorithms, the RIP suggested is not
respected.

Second, when the algorithms converge, their number of iterations scale accord-
ing to the underlying function f . The number of iterations behaves like a loga-
rithm for (GHTP2), like a square root for (GHTPn2) and linearly for both (GHTP2n)
and (GHTP). Again, (OMP) needs a few more iterations, mainly to compensate the
wrong indices that have been picked at an earlier stage of the algorithm.

Finally it is reasonable to think that the analysis carried out in Corollary 1 can be
extended to more general vector shapes. However to improve the estimation of the
number of iterations we would need to adapt the proof to earlier iterations, instead
of starting counting at n0.

5.3 Indices Correctly Captured

We investigate now the ability of our family of algorithms to pick correct indices at
each iteration. Figure 3 shows these quantities for the three kinds of vectors (Gaus-

3 Compared to real applications, we have access here to the true sparsity and the true support of
the signal x. This stopping criterion needs to be adapted for real-world examples

16 Jean-Luc Bouchot

(a) Gaussian vectors - Original algorithms

(b) Linear vectors - Original algorithms (c) Flat vectors - Original algorithms

(d) Gaussian vectors - Generalized algorithms

(e) Linear vectors - Generalized algorithms (f) Flat vectors - Generalized algo-
rithms

Fig. 1 Frequency of success for the original algorithms ((HTP), (GHTP2), (GHTP), and (OMP),
two firsts row) and the new generalized approach ((GHTP2n), (GHTPn2), (Hyb1) and (Hyb2),
bottom rows) when the original vector is Gaussian (first and third rows), linear (left column) or flat
(right column).

Generalized Hard Thresholding Algorithms 17

(a) Gaussian vectors

(b) Linear vectors (c) Flat vectors

Fig. 2 Maximum number of iterations for exact recovery for the different algorithms when con-
sidering Gaussian (top plot), linear (bottom left), or flat (bottom right) vectors.

sian to the left, linear in the middle and flat on the right) when dealing with different
sparsities and index selection functions (see legend for more details).

As expected most of the algorithms made no mistakes when picking a current
active set. This motivates that Proposition 1 can be improved to more general vector
shapes.

6 Conclusion

This article introduced a class of algorithms that generalizes the Hard Thresholding
Pursuit. It allows to overcome both the lack of a priori knowledge regarding the
sparsity of the signal to recover and the convergence issue noticed in an earlier
extension. We have shown that uniform and nonuniform convergence is possible for
all algorithms of this type however sometimes under unrealistic restricted isometrty
conditions.

Fortunately our numerical results tend to show that the number of iterations im-
plied by our results may be a really rough overestimations. This will lead our future
research which would also imply some improved restricted isometry conditions.
Moreover, by using a combination of index selecting functions, we are able to pro-

18 Jean-Luc Bouchot

(a) Gaussian vectors

(b) Linear vectors (c) Flat vectors

Fig. 3 Minimum number of correct indices picked at each iteration for different sparsity lev-
els. Continuous lines correspond to (OMP), circles to (GHTP2n), dashed lines to (GHTPn2) and
crosses to (GHTP2).

duce hybrid algorithms that are both reliable and fast, at least in a nonuniform set-
ting. For such algorithms, a selection of an adequate turning point is needed which
is also left for further studies.

Acknowledgments

The authors wants to thank Simon Foucart and Michael Minner for their fruitful
comments and suggested literature. The author is also thankful to the NSF for fund-
ing his work under the grant number (DMS-1120622).

References

[BD09] Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed
sensing. Applied and Computational Harmonic Analysis, 27:265–274, 2009.

[BFH13] Jean-Luc Bouchot, Simon Foucart, and Pawel Hitczenko. Hard thresholding pursuit
algorithms: Number of iterations. submitted, 2013.

Generalized Hard Thresholding Algorithms 19

[CP11] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. Journal of Mathematical Imaging and Vision,
40:120–145, 2011.

[CR05] Emmanuel J. Candès and Justin Romberg. `1-magic: Recovery of sparse signals via
convex programming. URL: www. acm. caltech. edu/l1magic/downloads/l1magic. pdf,
4, 2005.

[CT05] Emmanuel J. Candès and Terence Tao. Decoding by linear programming. Information
Theory, IEEE Transactions on, 51:4203–4215, 2005.

[CWB08] Emmanuel J Candès, Michael B Wakin, and Stephen P Boyd. Enhancing sparsity by
reweighted `1 minimization. Journal of Fourier Analysis and Applications, 14:877–905,
2008.

[Fou11] Simon Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM
Journal on numerical analysis, 2011.

[Fou12] Simon Foucart. Sparse recovery algorithms: sufficient conditions in terms of restricted
isometry constants. In Approximation Theory XIII: San Antonio 2010. Springer, 2012.

[FR13] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing.
Birkhaüser, 2013.

[NT09] Deanna Needell and Joel A Tropp. CoSaMP: Iterative signal recovery from incomplete
and inaccurate samples. Applied and Computational Harmonic Analysis, 26:301–321,
2009.

[TG07] Joel A Tropp and Anna C Gilbert. Signal recovery from random measurements via
orthogonal matching pursuit. Information Theory, IEEE Transactions on, 53:4655–4666,
2007.

[Tro04] Joel A Tropp. Greed is good: Algorithmic results for sparse approximation. Information
Theory, IEEE Transactions on, 50:2231–2242, 2004.

[WN10] David Wipf and Srikantan Nagarajan. Iterative reweighted `1 and `2 methods for finding
sparse solutions. IEEE Journal of Selected Topics in Signal Processing, 4:317–329,
2010.

[YZ11] Junfeng Yang and Yin Zhang. Alternating direction algorithms for ell 1-problems in
compressive sensing. SIAM Journal on Scientific Computing, 33:250–278, 2011.

[Zha11] Tong Zhang. Sparse recovery with orthogonal matching pursuit under RIP. Information
Theory, IEEE Transactions on, 57:6215–6221, 2011.

