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Abstract. We analyze the problem of recovering signals from low quality
sensing devices, and implement a combination of compressed sensing and dis-

tributed sensing to model so-called fusion frames structured signals. Within
our framework, it is possible to recover signals with high accuracy by increasing

the total number of measurements, while keeping the cheap sensors at hand.

We show that, under suitable constraints, nonsparse signals can be recovered
with high probability. Moreover, we show that, with the use of a few lin-

ear measurements, cheap sensors are sufficient when combined with the fusion

frame methodology. Using our new method, we show that it is possible, and
sometimes necessary, to split a signal via local projections for accurate, stable,

and robust estimation.

1. Introduction

In applications of sampling theory, a good sensor network design ensures that
recovery from sufficiently many samples of the signal of interest x ∈ KN is possible.
Here KN denotes a finite dimensional Hilbert space over the field of real or complex
numbers. When anticipating that the signal x ∈ KN is sparse, we can start with
scarce, noisy measurements y = Ax + e ∈ Km, m � N , and recover a sparse
x̂ ∈ KN ≈ x. The recovery is a result of solving the mathematical program

(`0-min) x̂ := argmin ‖z‖0, subject to ‖Az− y‖2 ≤ η.
The (`0-min) problem is NP-Hard, and its solution is approximated by the solution
of its convex relaxation, known as the Basis Pursuit denoising

(BPDN) x̂ := argmin ‖z‖1, subject to ‖Az− y‖2 ≤ η.
For a given sparsity s of x, the number of random subgaussian linear measurements
needs to grow as m & s log(N/s) for x̂ to be a good enough approximation to
x, which means, we have a stable and robust recovery, provided we needed but
relatively few measurements.

We analyze in this paper the problem of signal sampling and recovery when the
quality of sensors is constrained, hereby limiting the number of measurements m,
independently of the sparsity or complexity of the signal of interest. The sensors
constraints can be due to many reasons such as cost (e.g. using sensors at a coarser
resolution is cheaper than one at the finest), legal regulation (for instance in nuclear
medicine where one must not expose a patient to high amounts of radiations at

2010 Mathematics Subject Classification. Primary: 42C15, 68M10, 68Q85, 94A12 .
Key words and phrases. Fusion Frames, Distributed Sparsity.

1



2 ROZA ACESKA, JEAN-LUC BOUCHOT, AND SHIDONG LI

once). The quality of recovery is not ensured when the signals being sampled are
not sparse enough, given the constraints of the sensors used.

In this paper, we assume certain constraints on the sensor design which are fixed
due to some outside reasons. Under these assumptions, we take on the following
challenge: split the information carried by the signal in a clever way so that a
mathematical recovery is possible; that is, we apply the fusion frame theory to the
signal recovery problem. We show that it is possible to handle very complex signals
in an efficient and stable manner.

1.1. Motivation: Unavailability of high quality observation devices.
A time-invariant bounded linear operator is represented by a circulant matrix A.
Suppose A represents a sensing device whose number of rows m is physically limited
by the sampling rate (or resolution) of the device. Suppose also that the sparsity
of the sampled signal x is substantially larger than what the standard compressed
sensing techniques could handle when working with Ax.

In this context, the limitations on the sensing devices combined with the (po-
tentially) high number of non-zeros in the signals makes it impossible for a state-
of-the-art algorithm to recover the unknown signal x accurately. As illustrated in
Figure 1, we suggest to apply n such devices in parallel after pre-filtering. The
fused compressed sensing technique introduced here allows to resolve the problem
that otherwise a single device can not.

We present an example of such a real-life scenario to elaborate on the neces-
sity of the proposed fused compressed sensing technique: Suppose an application
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Figure 1. Sparse linear array geometry

requires a sophisticated sensing device Ã of very high sensing rate. Such a device
may be very expensive, or not available on the market, which is why we combine
10 parallel projections or filtering operations {Pj}10

j=1 prior to measuring using 10
lower rate devices, each with measurement matrix A. The (sparse) signal x is
then subsequently recovered by various techniques in each subspace/channel and,
through the theory of fusion frames [12, 13, 10], merged into a single vector.
Such a fusion operation is possible if {Pj}10

j=1 are the projections or any filtering

operations satisfying AI ≤
∑
i

P ∗j Pj ≤ BI for some 0 < A ≤ B <∞.

Here is why such a pre-filtering/projection mechanism manages to distribute
the sparsity. Since the signal has a 20GHz bandwidth, the non-zeros can be assumed
to be distributed within the entire bandwidth. Otherwise, the bandwidth could be
assumed to be smaller.
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In order for the fusion operator to be bounded away from 0, the projections
Pi are certainly bandpass in nature. Namely, Pi’s are distributed over adjacent
and overlapping bands so that there won’t be “holes” in the frequency domain.
Consequently, each Pi represents different bandpass filtering with different bands
and carries a ”different part of sparsity”; that is, the sparsity is distributed in
different bands.

Evidently, if we design such a fused compressed sensing technique, by enabling
the subdivision of sparsity of x into individual subspaces, the sparse recovery prob-
lem becomes a feasible one and can be resolved by multiple sensing devices with
sampling rates lower than 2GHz, which are not only widely available but also eco-
nomical.

The value of fused compressed sensing techniques presented in this paper is
clearly reflected in this situation where an otherwise too expensive or impossible
problem can now be resolved by using a number of lower resolution/sampling rate
devices and by making a reasonable number of observations, and processed by the
fusion frame theory.

1.2. Contributions. In this paper we combine mathematical tools from com-
pressed sensing and fusion frame theory to break the limitations on the signal com-
plexity induced by traditional recovery methods. Our Theorem 3.11 states the
following: Given a fusion frame system W = (Wi, Pi)

n
i=1 for KN with frame oper-

ator S and frame bounds 0 < C ≤ D < ∞, and a matrix A ∈ Km×N satisfying
a Partial RIP condition (see Definition 3.4), we can recover a s distributed sparse
vector x ∈ KN (see Definition 3.1) as

x̂ = S−1
n∑
i=1

x̂(i),

where the x̂(i) are obtained as solutions to the n local s-sparse recovery problems

x̂(i) := argmin ‖z‖0, subject to ‖APix− y(i)‖2 ≤ η.

Moreover, assuming certain uniformity over all subspaces, the error of solution
approximation ‖x̂− x‖2 is well-controlled by inequality (3.5).

In Section 2 we review the basic tools from compressed sensing and fusion
frame theory. We extend these tools to the case of recovery with assumed local
redundancy in the fusion frame decomposition in Section 3. In particular, we
derive a mathematical theory allowing to work with fusion frames where sparsity is
exploited along a subspace decomposition. Our theoretical results are illustrated on
numerical examples where we try to recover a signal with dense Fourier spectrum
from cheap sensors in Section 4.

2. General tools and models

2.1. Compressed sensing tools. Compressed sensing (CS) relies ([19, 17]
and references within) on the inherent sparsity of natural signals x for their recovery
from seemingly few measurements y = Ax+e for some linear measurement matrix
A ∈ Km×N , with m � N . Here the vector e ∈ Km represents the measurement
noise, and is assumed to be bounded, ‖e‖2 ≤ η. With the sparsity assumption, CS
aims at finding (approximate) solutions to the (`0-min) problem. General recovery
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guarantees ensure that the recovery is stable and robust, that is, the solution x̂
satisfies

‖x̂− x‖2 ≤
C√
s
σs(x)1 +Dη,

‖x̂− x‖1 ≤ Cσs(x)1 +D
√
sη,

where σs(x)1 := min
z:‖z‖0≤s

‖x− z‖1 is called the best s-term approximation of x.

Plethora of conditions (some of which we look closer in Section 3) on A have
been derived to ensure that the previous (or similar) estimates hold. These are

based on restricted isometry constants (δ2s <
√

2 − 1 [11] or δ2s < 4/
√

41 [19],
δs < 1/3), null space properties (A fulfills the robust and stable NSP(s, ρ, τ) if
‖vS‖1 ≤ ρ‖vS‖1 + τ‖Av‖2 for any vector v ∈ KN , and S any index set with
|S| ≤ s), coherence (µ1(s) + µ1(s − 1) < 1), quotient property, and so on. Similar
conditions and bounds can be found when greedy and thresholding algorithms are
used to approximate (`0-min) (see [5, 18, 7, 6, 23, 21] for some relatively recent
results in this direction).

There is still a need for building adequate sensing matrices A, which ensure
good recovery bounds. So far, no deterministic matrices A can be built with rea-
sonably few rows, and we have to rely on randomness to build measurement ma-
trices. It has been shown, for instance, that matrices with independent random
subgaussian entries fulfill the RIP(s, δ)under certain constraints on the number of
measurements [4, 22].

2.2. Frames, fusion frames, and distributed signal processing. By def-
inition, a sequence F = {fi}i∈I in a Hilbert space H is a frame [14] for H if there
exist 0 < A ≤ B <∞ (lower and upper frame bounds) such that

A‖f‖2 ≤
∑
i∈I
|〈f , fi〉|2 ≤ B‖f‖2 for all f ∈ H.

The representation space associated with F is `2(I) and its analysis and synthesis
operators are respectively given by T (f) = {〈f , fi〉}i∈I and T ∗({ci}i∈I) =

∑
i∈I cifi,

for all f ∈ H and {ci}i∈I ∈ `2(I). It shows that the frame operator S := T ∗T
is a positive, self-adjoint and invertible operator; this means that recovery of any
f ∈ H is possible, if Sf is known; however, computing S−1 can be computationally
challenging. Each frame F is accompanied by at least one so-called dual frame
G = {gi}i∈I , which satisfies

f =
∑
i∈I
〈f , fi〉gi =

∑
i∈I
〈f ,gi〉fi for all f ∈ H.

Whenever a frame is A-tight (A = B), the problem of function reconstruction is
simplified, since in this case the frame operator is given by S = AI, with I denoting
the identity operator.

Fusion frames have been initially created [12, 13] to model the setting of a
wireless sensor network. A large sensor network is typically split into redundant
sub-networks; the local measurements within each sub-network are sent to a local
sub-station, which submits the gathered information further to a central process-
ing station for final reconstruction. Each sub-network is related to a frame for
a subspace of a Hilbert space. The subspaces have to satisfy certain overlapping
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properties. The theory of fusion frames derives a number of means to fuse together
sub-station/subspace information for a complete signal reconstruction.

Definition 2.1 (Fusion frames). Given an index set I, let W := {Wi | i ∈ I}
be a family of closed subspaces in H. We denote by Pi the orthogonal projections
onto Wi. Then W is a fusion frame, if there exist C,D > 0 such that

C‖f‖2 ≤
∑
i∈I
‖Pi(f)‖2 ≤ D‖f‖2 for all f ∈ H.

Remark 2.2. Fusion frames are often accompanied by respective weights. In
the weighted case, the frame condition reads C‖f‖2 ≤

∑
i∈I v

2
i ‖Pi(f)‖2 ≤ D‖f‖2

for all f ∈ H and some positive weights (vi)i∈I . All (unweighted) results derived in
this paper apply mutatis mutandis to the weighted case.

The following theorem [12] illustrates the relationship between the local and
global properties of a fusion frame:

Theorem 2.3. For each i ∈ I, let Wi be a closed subspace of H, and let
Fi = {fij | j ∈ Ji} be a frame for Wi, with frame bounds Ai, Bi. If 0 < A =
infi∈I Ai ≤ supi∈I Bi = B <∞, then the following conditions are equivalent:

• ∪i∈I{fij | j ∈ Ji} is a frame for H.
• {(Wi,Fi)}i∈I is a fusion frame for H.

In particular, if {(Wi,Fi)}i∈I is a fusion frame system for H with frame bounds C
and D, then ∪i∈I{fij | j ∈ Ji} is a frame for H with frame bounds AC and BD.

In fusion frame theory, an input signal is represented by a collection of vector
coefficients that represent the projection onto each subspace. The representation
space used in this setting is(∑

i∈I
⊕Wi

)
`2

= {{fi}i∈I | fi ∈Wi}

with {‖fi‖}i∈I ∈ `2(I). The analysis operator is given by T (f) := {Pi(f)}i∈I for all
f ∈ H, while its adjoint is the synthesis operator T ∗ :

(∑
i∈I ⊕Wi

)
`2 → H, defined

by

T ∗(f) =
∑
i

fi, where f = {fi}i∈I ∈

(∑
i∈I
⊕Wi

)
`2

.

The fusion frame operator S = T ∗T is given by S(f) =
∑
i∈I

Pi(f). It is easy to verify

that S is a positive and invertible operator on H. A distributed fusion processing
is feasible in an elegant way, since the reconstruction formula for all f ∈ H is

f =
∑
i∈I

S−1Pi(f) = S−1
∑
i∈I

Pi(f).

2.3. Signal recovery in fusion frames. This work describes an approach
for sensing and reconstructing signals in a fusion frame structure. As presented
above, given some local information x(i) := Pi(x), for 1 ≤ i ≤ n, a vector can easily
be reconstructed by applying the inverse fusion frame operator

(2.1) x := S−1S(x) = S−1
n∑
i=1

Pi(x) = S−1

(
n∑
i=1

x(i)

)
.
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Throughout this work, we assume that the projected vectors are sampled indepen-
dently from one another, with n devices modeled by the same sensing matrix A.
The task at hand is as follows: Use the measurements y(i) = Ax(i) +e(i) to compute

an estimate x̂(i) of the local component x(i); then compute the approximation x̂ of
the signal x via (2.1).

From this point on, there are two ways of thinking about the problem. In a first
scenario, the signals are measured in the subspace and the recovery of each x(i) is
done locally. In other words, it accounts for solving n (`0-min) problems (or their
approximations via (BPDN) for instance) in the subspaces, and then transmitting
the estimated local signals to a central unit taking care of the fusion via an analogue
of (2.1).The other approach consists of transmitting the local observations y(i) =
APix+e(i) to a central processing unit which takes care of the whole reconstruction
process. In this case, the vector x can be recovered by solving a unique (`0-min)
problem directly with, letting In denote the n dimensional identity matrix,

(2.2) y =

 y(1)

...
y(n)

 = In ⊗A

 P1

...
Pn

x

While the latter case is interesting on its own (see for instance [16]), we investigate
here some results for the first case. Our results can be generalized further, inte-
grating ideas where the measurements matrix (here, the sensors) vary locally, as is
the case in [16] or driven with some structured acquisition (see for instance [9]).

We would like to put our work in context. This paper is not the first one to
describe the use of fusion frames in sparse signal recovery. However, it is inherently
different from previous works in [8, 2]. In [8] the authors provide a framework
for recovering sparse fusion frame coefficients. In other words, given a fusion frame
system {(Wi, Pi)}ni=1 a vector is represented on this fusion frame as a set of n vectors
(x(i))ni=1 where each of the x(i) corresponds to the coefficient vector in subspace Wi.
The main idea of the authors is that the original signal may only lie in few of the
n subspaces, implying that most of the x(i) should be 0. To rephrase the problem,
we can say that the vector has to lie in a sparse subset of the original fusion frame.
In terms of the band-pass filtering discussed in the introduction, this would be
equivalent to the coefficients to 0 within a whole band. While [8] is concerned with
some recovery guarantees under (fusion-type) RIP and average case analysis, the
paper [2] gives uniform results for subgaussian measurements and derives results
on the minimum number of vector measurements required for robust and stable
recovery.

3. An extension of traditional compressed sensing

Our goal is to ensure robust and stable recovery of complex signals by smartly
combining local information. For this purpose, we extend the tools of traditional
CS via the use of fusion frames. We note that the authors of [16, 15] introduce a
model which corresponds to the the idea of solving a single sparse recovery problem.
They analyze RIP conditions to ensure stable and robust recovery of x via a single
matrix similar to Equation (2.2).

We start with a fusion frame W = (Wi, Pi)
n
i=1 for KN , and assume that our

signal of interest is x ∈ KN . We aim at signal recovery by means of (a) CS in



FUSION FRAMES AND DISTRIBUTED SPARSITY 7

local subspaces and (b) fusion processing; that is, the local pieces of information
are computed as solutions to the problems

(P1,η) min
x∈KN

‖z‖1 s.t. ‖APiz− y(i)‖2 ≤ η,

where Pi is the projection operator related to subspace Wi. In the noiseless case,
the problem is solved by the basis pursuit

(P1,0) min
x∈KN

‖z‖1 s.t. APiz = y(i).

Numerically, solving a set of smaller subproblems is typically more efficient than
solving a single large system. In addition, the compressed sensing step in local
subspaces can be done in a parallel fashion, greatly improving the computational
efficiency.

Definition 3.1. Let s > 0 and set s = (s, . . . , s) be the n-tuple with identical
entries s. A signal x ∈ KN is said to be s-uniformly distributed sparse (or s-UD
sparse) with respect to a fusion frame W = (Wi, Pi)

n
i=1, if ‖Pi(x)‖0 ≤ s, for every

1 ≤ i ≤ n. We also refer to s as a uniform sparsity pattern of x with respect to W.

Remark 3.2. It is important to understand what it means for a signal to be
distributed sparse. In particular, an s sparse signal need not be distributed s sparse.
Conversely, an s dibstributed sparse signal might also be dense.

An important particular case, is when dealing with projections parallel to the
original axis of the space. In this case, an s sparse vector is also s distributed
sparse, where the worst case scenario is if all the s non zero terms fall within a
single subspace. An optimal design of the fusion frame is dependent on the signal,
and plays a great role in our approach.

By Σ
(W)
s we denote the set of all s-UD sparse vectors with respect to the family

of subspacesW. Since the sparsity of the signal is uniformly distributed among the
subspaces, the usual CS recovery guarantees ensure that

m � s log(N/s)

(subgaussian) observations per subspace are required for a stable and robust re-
covery of x. This accounts for a total number of measurements scaling as mT �
ns log(N/s). Most of the computations can be easily carried in a distributed set-
ting, where only pieces of the information are available. Only the fusion process
requires all the local information to compute the final estimation of a signal.

Note that, for p > 0 and a UD sparsity pattern s = (s, · · · , s) with s ∈ N+,
the `p errors of best s-term approximations are understood in a distributed setting,
and are embedded in the vector

σWs (x)p := (σs(P1x)p, σs(P2x)p, · · · , σs(Pnx)p)
T
.

3.1. Partial properties. The null space property (NSP) is used in the CS
literature as a necessary and sufficient condition for the sparse recovery problem
via (`0-min). A matrix A is said to satisfy the (robust) null space property with
parameters ρ ∈ (0, 1) and τ > 0 relative to a set S ⊂ {1, · · · , N} if

‖vS‖1 ≤ ρ‖vS‖1 + τ‖Av‖2, for all v ∈ KN .

More generally, we say that the matrix A satisfies the NSP of order s if it satisfies
the NSP relative to all sets S such that |S| ≤ s. Here we talk about a sparsity
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pattern and ask that the NSP property be valid for all local subspaces up to a
certain (local) sparsity level.

Definition 3.3 (Uniformly distributed partial null space property (UDP-NSP)).
Let W = (Wi, Pi)

n
i=1 be a fusion frame for KN , and let s be a UD sparsity pattern

(with entries s). A sensing matrix A ∈ Km×N is said to fulfill the UDP-NSP with
UD pattern s with respect to W and uniform constants ρ ∈ (0, 1) and τ > 0 if

‖(Piv)Si‖1 ≤ ρ‖(Piv)Si‖1 + τ‖Av‖2,

for all v ∈ KN , 1 ≤ i ≤ n, Si ⊂Wi, and |Si| ≤ s.

Definition 3.3 is reminiscent of the work on sparse recovery with partially known
support [3]. Note that in our case, there is no need to enforce a condition on the
vector v to lie in the range of the other subspaces. In a sense, this is taken care of
by the fusion process and the fact that we have multiple measurement vectors.

In CS, a stronger condition is often used to ensure recovery: the Restricted
Isometry Property (RIP). A matrix is said to satisfy the RIP (s, δ) if it behaves
like an isometry (up to a constant δ) on every s-sparse vector v ∈ Σs. Formally
speaking, A ∈ Km×N satisfies RIP (s, δ), for some s ≥ 2 and δ ∈ (0, 1) if

(3.1) (1− δ)‖v‖22 ≤ ‖Av‖22 ≤ (1 + δ)‖v‖22, for every v ∈ Σs.

The lowest δ satisfying the inequalities is called the restricted isometry constant. We
want to derive similar properties on our sensing matrix for the distributed sparse
signal model.

Definition 3.4 (Uniform Partial RIP (UP-RIP)). Let W = (Wi, Pi)
n
i=1 be a

fusion frame, and let A ∈ Km×N . Assume that APi satisfies the RIP (s, δ) on each
Wi, with δ ∈ (0, 1), i ∈ I = {1, · · · , n}. Then, we say that A ∈ Km×N satisfies the
UP-RIP with respect to W, with uniform bound δ and uniform sparsity pattern s.

Remark 3.5. Definition 3.4 reduces to the definition of the classical RIP when
n = 1 (one projection, one subspace).

The UP-RIP is characterized by an inequality similar to Equation (3.1):

Proposition 1. Let W = (Wi)
n
i=1 be a fusion frame for KN , with frame

bounds 0 < C ≤ D < ∞. Let A ∈ Km×N satisfy the UP-RIP with respect to W,
with uniform bound δ and sparsity pattern s = (s, · · · , s), and let Co = C(1 − δ),
Do = D(1 + δ). Then, for any v ∈ ΣWs .

Co‖v‖22 ≤
n∑
i=1

‖Avi‖22 ≤ Do‖v‖22.

Proof. Using the fusion frame inequality, and inequalities (3.1) on each Wi,
1 ≤ i ≤ n, we obtain

Co‖v‖22 ≤ (1− δ)
∑
i

‖vi‖22 ≤
∑
i

(1− δ)‖vi‖22 ≤
∑
i

‖Avi‖22

≤
∑
i

(1 + δ)‖vi‖22 ≤ (1 + δ)
∑
i

‖vi‖22 ≤ Do‖v‖22.

�

We recall a standard RIP result for subgaussian matrices (Thm9.2 in [19]):
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Theorem 3.6. Let ε > 0. Let A be an m × N subgaussian random matrix.
Then there exists a constant C > 0 (depending only on subgaussian parameters β,
k) such that the RIP constant δs of 1√

m
A satisfies δs ≤ δ with probability at least

1− ε, if

m ≥ Cδ−2
(
s ln(eN/s) + ln(2ε−1)

)
.

It is relatively easy to show that:

Theorem 3.7. Let ε > 0. Let W = (Wi, Pi)
n
i=1 be a fusion frame for KN .

Let A ∈ Km×N be a subgaussian matrix with parameters β, k. Then, there exists
a constant C = Cβ,k such that the UP-RIP constants of 1√

m
A satisfy δs ≤ δ, with

probability at least 1− ε, provided

m ≥ C 1

δ2

(
s ln(eN/s) + ln(2ε−1n)

)
.

Remark 3.8. All Gaussian and Bernoulli random matrices are subgaussian
random matrices, so Theorem 3.7 holds true for Gaussian and Bernoulli random
matrices.

3.2. Recovery in general fusion frames settings. Using the tools intro-
duced in Subsection 3.1, we show that any signals with uniform sparsity pattern s
can be recovered in a stable and robust manner via a fusion frame approach.

Theorem 3.9. Let A ∈ Km×N and W = (Wi, Pi)
n
i=1 a fusion frame with

frame bounds 0 < C ≤ D < ∞ and frame operator S. Let
(
y(i)
)n
i=1

be the linear

measurements y(i) = APix + e(i), 1 ≤ i ≤ n for some uniformly bounded noise

vectors e(i) such that ‖e(i)‖2 ≤ η. Denote by x̂(i) the solution to the local Basis
pursuit problems (P1,η).

If the matrix A satisfies the UDP-NSP with sparsity pattern s with constants

0 < ρ < 1 and τ > 0 with respect to W, then x̂ = S−1
∑
i x̂

(i) approximates x in
the following sense:

(3.2) ‖x̂− x‖2 ≤ ‖x̂− x‖1 ≤
2

C

(
1 + ρ

1− ρ

n∑
i=1

σs(Pix) +
2nτη

1− ρ

)
.

Proof. The solution is given by the fusion process x̂ = S−1
(∑n

i=1 x̂
(i)
)

with

x̂(i) the solutions to the local problems (P1,η). It holds

‖x− x̂‖2 =

∥∥∥∥∥S−1

(
n∑
i=1

Pix−
n∑
i=1

x̂(i)

)∥∥∥∥∥
2

≤ C−1
n∑
i=1

∥∥∥Pix− x̂(i)
∥∥∥

2
.

Thus

‖x− x̂‖2 ≤ C−1
n∑
i=1

∥∥∥Pix− x̂(i)
∥∥∥

1
.

For each i ∈ {1, · · · , n}, we estimate the error on subspace Wi in the `1 sense: if

v := Pix− x̂(i) and Si ⊂ Wi the set of best si components of x supported on Wi,
then the robust null space property yields

‖(Piv)Si‖1 ≤ ρ
∥∥(Piv)Si

∥∥
1

+ τ‖Av‖2.
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Combining with [19, Lemma 4.15] stating∥∥(Piv)Si

∥∥
1
≤
∥∥∥Pix̂(i)

∥∥∥
1
− ‖Pix‖1 +

∥∥(Piv)Si

∥∥
1

+ 2
∥∥(Pix)Si

∥∥
1
.

Summing both inequalities, we arrive at

(1− ρ)
∥∥(Piv)Si

∥∥
1
≤ ‖Pix̂(i)‖1 − ‖Pix‖1 + 2

∥∥(Pix)Si

∥∥
1

+ τ‖Av‖2.

Applying once again the local robust NSP, it holds

‖Piv‖1 = ‖(Piv)Si‖1 +
∥∥(Piv)Si

∥∥
1
≤ ρ

∥∥(Piv)Si

∥∥
1

+ τ‖Av‖2 +
∥∥(Piv)Si

∥∥
1

≤ (1 + ρ)
∥∥(Piv)Si

∥∥
1

+ τ‖Av‖2

≤ 1 + ρ

1− ρ

(
‖Pix̂(i)‖1 − ‖Pix‖1 + 2

∥∥(Pix)Si

∥∥
1

)
+

4τ

1− ρ
‖Av‖2.

Noticing that Pix̂(i) = x̂(i), and x̂(i) being the optimal solution to (P1,η), it is clear

that ‖x̂(i)‖1 ≤ ‖Pix‖1 from what we can conclude that

(3.3)
∥∥∥Pix− x̂(i)

∥∥∥
1

= ‖Piv‖1 ≤ 2
1 + ρ

1− ρ
σWs (x)1,i +

4τ

1− ρ
‖Av‖2.

Remembering that ‖ · ‖2 ≤ ‖ · ‖1 and summing up the contributions for all i in
{1, · · · , n} and applying the inverse frame operator finishes the proof. �

3.2.1. UP-RIP based recovery. We will now demonstrate that the UP-RIP is
sufficient for stable and robust recovery; the following result, showing the existence
of random matrices satisfying the UDP-NSP, is crucial to our argument.

Theorem 3.10. Let A ∈ Km×N be a matrix satisfying the UP-RIP(2s,δ), with

s = (s, · · · , s) and δ < 4/
√

41 on all Wi, 1 ≤ i ≤ n. Then, A satisfies the UDP-
NSP with constants

(3.4)
ρ := δ√

1−δ2−δ/4 < 1

τ :=
√

1+δ
√
s√

1−δ2−δ/4 .

Proof. The proof of this result consists in simply applying [19, Theorem 6.13]
to every subspace independently. �

By Theorem 3.9 and Theorem 3.10, we have a first recovery result under UP-
RIP:

Theorem 3.11. Let W = (Wi, Pi)
n
i=1 be a fusion frame for KN with frame

operator S and frame bounds 0 < C ≤ D < ∞. Let A ∈ Km×N be a matrix
satisfying the UP-RIP(2s, δ) where δ < 4/

√
41.

Then any uniformly distributed sparse vector x ∈ Σ
(W)
s can be recovered by

solving n (BPDN) problems, and the recovery is

x̂ = S−1
∑

x̂(i).

In addition, let the noise in each (BPDN) problem be controlled by ‖e(i)‖2 ≤ η,
1 ≤ i ≤ n. Then

(3.5) ‖x̂− x‖2 ≤
2 (2δ + 1)C−1

1− 41
16δ

2

(
n∑
i=1

σs(Pix)1 + 2nη
√
s
√

1 + δ

)
.
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Proof. By (3.4), it follows

1 + ρ

1− ρ
=

1− δ2/16 + 2δ
√

1− δ2

1− 41
16δ

2

τ

1− ρ
=

√
s
√

1 + δ
(√

1− δ2 + 5
4δ
)

1− 41
16δ

2

Due to inequality (3.2), ‖x̂− x‖2 is bounded from above by

(3.6)
2

C

n∑
i=1

(
1− δ2/16 + 2δ

√
1− δ2

)
σs(Pix)1 + 2

√
1 + δ

(√
1− δ2 + 5

4δ
)√

sη

1− 41
16δ

2

Notice that 1−δ2/16+2δ
√

1− δ2 ≤ 2δ+1 when δ ∈ (0, 4/
√

41); also,
√

1− δ2+
5
4δ ≤ 1 + 5

4δ < 1 + 2δ. Then, (3.6) implies

‖x̂− x‖2 ≤
2

C

n∑
i=1

(2δ + 1)σs(Pix)1 + 2
√

1 + δ (2δ + 1)
√
sη

1− 41
16δ

2

i.e.

‖x̂− x‖2 ≤
2 (2δ + 1)C−1

1− 41
16δ

2

(
n∑
i=1

σs(Pix)1 + 2n
√
sη
√

1 + δ

)
.

�

Remark 3.12. Traditional results in CS theory show a decay of the `2 error
in s−1/2σs(x)1. This is not the case here. However, such a bound can be achieved,
when working with extensions of the `q robust null space properties (see [19, 4.21]
for the single subspace definition). This is actually a passage implicit in the proof of
Theorem 3.10 (see for instance [19, Theorem 4.22] with the appropriate changes).
We choose not to detail these results to ease the presentation.

4. Application to dense spectrum estimation

We derive here a simple, yet convincing, example of the application of our ap-
proach to the estimation of a dense Fourier spectrum from relatively cheap sensors.

We artificially construct a signal whose Fourier spectrum is sparse. To this
end, we consider an 2N +1-spectrum with N = 2500. 60% of these frequencies (i.e.
3000 indices) are selected at random and the magnitude is set uniformly at random
in [0, 1]. An example of such a random spectrum is illustrated as the blue dots on
Figure 2b.

We then split the spectrum in n = 60 equally sized frequency bands, such
that each frequency is present in at least 3 bands. The set of projections in the
fusion frame approach is then simply a direct band-pass filter. The associated frame
operator is hence S = 3I. The measurements are taken via a random subsampled

Fourier matrix. Consider the unscaled Fourier matrix FN :=
(
e

ı2πkt
N

)
−N≤t,k≤N

and extract m rows indexed by Ω ⊂ {1, · · · , 2N + 1} at random and construct
the sensing matrix as A = 1√

m
(FN (i, k))i∈Ω,1≤k≤2N+1. While the optimal bound

known so far for RIPs for Fourier matrices [20] suggest that m should scale as
mtheoretical ≥ Cs log(s)2 log(N), we have here set

m = 2s log(2N + 1),
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(a) Signal generated with a dense Fourier spectrum
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(b) Fourier spectrum: the support and the magnitudes are generated uniformly at random.

Figure 2. Noiseless recovery via the fused compressed sensing
approach introduced. Blue circles are true values, while red crosses
represent our estimations.

which is believed to be closer to the optimal bounds, and still numerically performs
well. It corresponds in this situation to m = 1197 measurements per sensor. The
sparse recovery is approximated by means of the HTP algorithm [18] to speed up
slightly the calculations. The recovered spectrum after n local recovery and a fusion
of the data can be seen as the red crosses on Figure 2b. This corresponds to the
signal depicted in Figure 2a, where, once again, the blue circles corresponds to the
true signal and the red crosses to the one generated after a Fast Fourier Transform
on the recovered spectrum.

Lastly Figure 3 shows the result of our fused compressed sensing approach when
independent additive Gaussian noise is included in the measurement process. As
can be justified by our theorems, the approach is robust, even when fairly strong
Gaussian noise is added. Figure 3b includes noise with 0.02 variance indepently
at each sensor and yet yields almost perfect recovery of the signal. It is impor-
tant to notice here that the sensors can be considered very cheap in the sense that
they account for around 40% of the whole signal size, which in turns means that
they also represent only 2/3 of the number of non-zeroes in the spectrum. In this
particular case, there is no hope to recover the underlying spectrum without mul-
tiple measurements, and the use of the Fusion Frame approach allows for efficient
computations and recovery without facing further problems.
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(a) Noisy signal recovery with additive Gaussian noise with variance 0.01.
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(b) Noisy signal recovery with additive Gaussian noise with variance 0.02.

Figure 3. Noisy signal recovery via our fused compressed sensing
approach. Top corresponds to .01 additive Gaussian random noise
to each sensor, while the bottom one corresponds to .02 additive
Gaussian noise.

5. Conclusion

In applications, it is beneficial to increase the number of non-zeros that can be
recovered, and the related number of measurements scales with the sparsity/density.
To avoid this explosion in sizes, we have combined ideas from distributed com-
pressed sensing and fusion frames reconstruction methods to recover a signal x ∈
KN from the (noisy) measurements y(i) = APix+e(i) , where the {Pi}ni=1 is a family
of n projections in KN . We have solved this high-dimensional problem y = Ax by
combining results obtained from n localized problems, by means of fusion frames.
Each localized problem is significantly easier to solve. We have shown that our
approach extends classical theories in compressed sensing to a distributed sampling
setting. In particular, it allows to gives a strong mathematical foundations to the
engineering problems that may require approaches similar to the ones we described
here. One can assume non-uniform sparsity patterns, and nonuniform constants in
to expand Definitions 3.1, 3.3 and 3.4; such generalizations are explored in [1]. In
particular, by fitting the projections appropriately to the sought to recover signal,
one can easily analyze the block sparse model and the t-separation model. One
may also be interested in `1 analysis models, which are investigated in [1] . In
particular, this becomes handy when dealing with expansions in coherent frames.
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